
Understanding Source Code Comments at Large-Scale
Hao He

School of Electronics Engineering and Computer Science, Peking University
Beijing, China

heh@pku.edu.cn

ABSTRACT
Source code comments are important for any software, but the basic
patterns of writing comments across domains and programming
languages remain unclear. In this paper, we take a first step toward
understanding differences in commenting practices by analyzing
the comment density of 150 projects in 5 different programming
languages. We have found that there are noticeable differences
in comment density, which may be related to the programming
language used in the project and the purpose of the project.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement.

KEYWORDS
Source Code Comments, Comment Density, Empirical Study
ACM Reference Format:
Hao He. 2019. Understanding Source Code Comments at Large-Scale. In
Proceedings of the 27th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’19),
August 26–30, 2019, Tallinn, Estonia. ACM, New York, NY, USA, 3 pages.
https://doi.org/10.1145/3338906.3342494

1 PROBLEM AND MOTIVATION
Source code comments constitute an important part of any software,
which help people understand code and facilitate software mainte-
nance [18, 20]. To understand how programmers write comments
and find insights for improving software practices, existing studies
have analyzed comments from various perspectives, such as ratio of
comments [11], comment code co-evolution [3], and the purpose of
comments [14]. However, these studies are often limited in one pro-
gramming language, one or several projects and one specific aspect
of code comments. Meanwhile, the very basic pattern of writing
comments across domain and language remains unclear, while it
may greatly help software projects understand their position and
adjust their practices accordingly. The main reason might be that it
is not easy to access sufficient projects to make a comparison. In
particular, we may not be able to access a large amount of projects
and the effort to collect the needed data is significant. Recently,
the rise of large open source platforms such as GitHub and the
emergence of open source project databases like GHTorrent [4]

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5572-8/19/08.
https://doi.org/10.1145/3338906.3342494

and World of Code [10] enables large scale analysis of software
projects. Therefore, we set up to conduct a large scale investigation
of code comments and expect to help practices in various ways,
e.g., defining benchmark for comment density, locating where to
comment, and generating comments for code (e.g. [2, 7–9, 19]).

2 BACKGROUND AND RELATEDWORK
Programmers frequently write comments along with source code.
As a result, code comments form an important part of documen-
tation, providing additional information not immediately visible
from source code. Studies have shown that reading source code
with comments aid with program comprehension [18, 20]. Fur-
ther research reveals that the quality of comment itself, especially
the consistency between source code and comments, is crucial for
avoiding software bugs and improving maintainability [3, 16].

Because of the important role of comments in program compre-
hension, software quality and software maintenance, there have
been a number of studies that analyze comments in existing soft-
ware projects [1, 3, 5, 6, 13, 14]. However, existing studies either
focus on one programming language [5, 14] or one specific appli-
cation domain (e.g. operating systems [13]), or consider only one
specific dimension of comments (e.g. comment density [1], links
in comments [6]). To the best of our knowledge, no existing re-
search has focused on analyzing commenting practices and their
differences in a large number of heterogeneous projects.

3 APPROACH
We take an initial step towards understanding commenting prac-
tices across projects by addressing the following research questions:

• RQ1: Do projects practice commenting differently?
• RQ2: What may cause the differences?

3.1 Selection of Open Source Projects
We choose five most popular programming languages among 1000
most starred Repositories on GitHub (JavaScript, Java, C++, Python
and Go at the time of April 2019) and collect 30 most starred repos-
itories for each programming language. This is a relatively small
dataset for preliminary analysis and we plan to use the World of
Code [10] database in the future.

3.2 Analysis of Comment Density
To answer RQ1, we begin from one simple metric: comment density,
which has also been used to measure software maintainability [11]
and quality [15]. We plan to investigate more sophisticated metrics
in the future, such as vocabulary used in comments and distribution
of comments over program structures.

https://doi.org/10.1145/3338906.3342494
https://doi.org/10.1145/3338906.3342494


ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Hao He

Python Java C++ JavaScript Go
Programming Language

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Co
m

m
en

t D
en

sit
y

Average
Median

(a) Comment density in
different programming
languages

0 100 200 300 400 500
Contributors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
m

m
en

t D
en

sit
y

Python
Java
C++
JavaScript
Go

(b) Relationship between
comment density and # of
contributors

Figure 1: Figures for Comment Density Analysis

We define comment density of a project as follows:

Comment Density =
Line of Comments

Line of Code
(1)

For each project, we count its lines of code and lines of comment
of its major programming language.

To answer RQ2, we propose the following hypothesis based on
existing literature and practical experiences:

(1) H1: The programming language used in a project may affect
its comment density.

(2) H2: The purpose of a project may affect its comment density.
(3) H3: Team size may affect the comment density of a project

because more people need to read the code.

4 RESULTS
RQ1: Do projects practice commenting differently? We find
that comment density varies greatly in the 150 collected projects
(avд = 0.2124, stddev = 0.1807,max = 1.2691,min = 0.003, ex-
cluding projects with no code at all). The most heavily commented
project has more lines of comments than source code (which is
java-design-patterns1, with 29414 lines of code and 37329 lines of
comments). On the other hand, comments in some projects are
extremely scarce, e.g., Font-Awesome2, with 73808 lines of code
and 240 lines of comments. The results suggest that projects do
have different commenting practices.

RQ2: What may cause the differences?
To confirmH1, we plot the average and median comment density

for different programming languages (Figure 1a). Since the distri-
bution is not normal, we conduct Wilcoxon signed-rank test on
languages pairs and find that the comment density of Python and
Java projects is significantly higher than C++, JavaScript and Go
projects (See Table 1 for original p-values). One possible explanation
is that there are widely adopted documentation generation tools
for Java [12] and Python [17], which specify a given set of rules
for programmers to write comments. The other three languages,
however, have no widely adopted rules for writing comments.

To confirm H2, we manually inspect 30 Java projects and 30
JavaScript projects in the collected dataset. We identify three major
purposes for which the project is used:

(1) Software Reuse. The project is a framework or a library,
which provides functions or solutions for other people to

1https://github.com/iluwatar/java-design-patterns
2https://github.com/FortAwesome/Font-Awesome/

Table 1: Original p-Values of theWilcoxon Signed-rank Test

Python Java C++ JavaScript Go

Python 1.0000 0.4420 0.0003 0.0034 0.0008
Java 1.0000 0.0027 0.0115 0.0043
C++ 1.0000 0.7227 0.7562

JavaScript 1.0000 0.9764
Go 1.0000

Table 2: Average Comment Density by Project Purpose

Education Software Reuse Application

Java 0.5751 0.2739 0.0641
JavaScript 0.2650 0.1760 0.1050

reuse in their own applications (e.g. Vue.js3, a progressive
web framework for developers to build web applications).

(2) Application. The project is a complete and ready-to-use ap-
plication for interested users (e.g. proxyee-down4, an HTTP
downloader implemented in Java).

(3) Education. The project is set up for educational purposes.
Users of this project are supposed to understand and learn
from the source code (e.g. Android-CleanArchitecture5, an
example to learn how to architect an Android application).

Table 2 summarizes average comment density of the three differ-
ent type of projects, for Java and JavaScript respectively. Projects
with educational purposes have the highest comment density, while
projects which are ready-to-use applications have the lowest, and
projects with software reuse purposes stay in the middle. One pos-
sible explanation is that, for educational projects, it is important to
have enough comments so that most users can understand the code.
For applications, only core developers need to read and understand
its source code and only a minimum amount of comments are nec-
essary. For reusable open source libraries and frameworks, users
occasionally need to read its source code to understand its usage
or find bugs, and thus they need to have a reasonable amount of
comments. However, we have to point out that the dataset is too
small to conduct any statistic significance tests. We plan to replicate
on a larger dataset in the future.

To confirm H3, we plot the number of contributors along with
comment density (Figure 1b). However, we fail to observe any
correlation that supports H3. Further investigation is needed to
reveal the relationship between comment density and team size.

5 CONCLUSION
We take a first step toward understanding the differences of source
code comments across various projects. We have found that there
are indeed noticeable differences in comment density of different
projects, which may be related to the programming language used
in the project and the purpose of the project. The result is promising
and we plan to further investigate this problem in the future.
3https://github.com/vuejs/vue
4https://github.com/proxyee-down-org/proxyee-down
5https://github.com/android10/Android-CleanArchitecture

https://github.com/iluwatar/java-design-patterns
https://github.com/FortAwesome/Font-Awesome/
https://github.com/vuejs/vue
https://github.com/proxyee-down-org/proxyee-down
https://github.com/android10/Android-CleanArchitecture


Understanding Source Code Comments at Large-Scale ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES
[1] Oliver Arafat and Dirk Riehle. 2009. The comment density of open source

software code. In 31st International Conference on Software Engineering, ICSE
2009, May 16-24, 2009, Vancouver, Canada, Companion Volume. 195–198. https:
//doi.org/10.1109/ICSE-COMPANION.2009.5070980

[2] Qingying Chen and Minghui Zhou. 2018. A neural framework for retrieval and
summarization of source code. In Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. 826–831. https://doi.org/10.1145/3238147.3240471

[3] Beat Fluri, Michael Würsch, Emanuel Giger, and Harald C. Gall. 2009. Analyzing
the Co-evolution of Comments and Source Code. Software Quality Journal 17, 4
(Dec. 2009), 367–394. https://doi.org/10.1007/s11219-009-9075-x

[4] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a
firehose. In 9th IEEE Working Conference of Mining Software Repositories, MSR
2012, June 2-3, 2012, Zurich, Switzerland. 12–21. https://doi.org/10.1109/MSR.
2012.6224294

[5] Dorsaf Haouari, Houari A. Sahraoui, and Philippe Langlais. 2011. How Good is
Your Comment? A Study of Comments in Java Programs. In Proceedings of the
5th International Symposium on Empirical Software Engineering and Measurement,
ESEM 2011, Banff, AB, Canada, September 22-23, 2011. 137–146. https://doi.org/
10.1109/ESEM.2011.22

[6] Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 2019.
9.6 Million Links in Source Code Comments: Purpose, Evolution, and Decay.
CoRR abs/1901.07440 (2019). arXiv:1901.07440 http://arxiv.org/abs/1901.07440

[7] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment
generation. In Proceedings of the 26th Conference on Program Comprehension,
ICPC 2018, Gothenburg, Sweden, May 27-28, 2018. 200–210. https://doi.org/10.
1145/3196321.3196334

[8] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. 2018. Summarizing
Source Code with Transferred API Knowledge. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July
13-19, 2018, Stockholm, Sweden. 2269–2275. https://doi.org/10.24963/ijcai.2018/314

[9] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing Source Code using a Neural Attention Model. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, ACL 2016,
August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. http://aclweb.org/
anthology/P/P16/P16-1195.pdf

[10] Yuxing Ma, Christopher Bogart, Sadika Amreen, Russell Zaretzki, and Audris
Mockus. 2019. World of Code: An Infrastructure for Mining the Universe of Open
Source VCS Data. In 16th International Conference on Mining Software Repositories,
MSR 2019.

[11] P. Oman and J. Hagemeister. 1992. Metrics for assessing a software system’s
maintainability. In Proceedings Conference on Software Maintenance 1992. 337–344.
https://doi.org/10.1109/ICSM.1992.242525

[12] Oracle. 2019. Javadoc. https://docs.oracle.com/javase/8/docs/technotes/tools/
windows/javadoc.html. Accessed: 2019-06-05.

[13] Yoann Padioleau, Lin Tan, and Yuanyuan Zhou. 2009. Listening to programmers
- Taxonomies and characteristics of comments in operating system code. In 31st
International Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings. 331–341. https://doi.org/10.1109/ICSE.2009.
5070533

[14] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java
open-source software systems. In Proceedings of the 14th International Conference
on Mining Software Repositories, MSR 2017, Buenos Aires, Argentina, May 20-28,
2017. 227–237. https://doi.org/10.1109/MSR.2017.63

[15] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and Georgios L. Bleris.
2002. Code Quality Analysis in Open Source Software Development. Information
System Journal 12, 1 (2002), 43–60. https://doi.org/10.1046/j.1365-2575.2002.
00117.x

[16] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*Icomment: Bugs
or Bad Comments?*/. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles (SOSP ’07). ACM, New York, NY, USA, 145–158.
https://doi.org/10.1145/1294261.1294276

[17] The Sphinx team. 2019. Sphinx. http://www.sphinx-doc.org/en/master/. Ac-
cessed: 2019-06-05.

[18] T. Tenny. 1988. Program Readability: Procedures Versus Comments. IEEE Trans.
Softw. Eng. 14, 9 (Sept. 1988), 1271–1279. https://doi.org/10.1109/32.6171

[19] Edmund Wong, Jinqiu Yang, and Lin Tan. 2013. AutoComment: Mining question
and answer sites for automatic comment generation. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2013, Silicon
Valley, CA, USA, November 11-15, 2013. 562–567. https://doi.org/10.1109/ASE.
2013.6693113

[20] S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen. 1981. The Effect of Modular-
ization and Comments on Program Comprehension. In Proceedings of the 5th
International Conference on Software Engineering (ICSE ’81). IEEE Press, Piscat-
away, NJ, USA, 215–223. http://dl.acm.org/citation.cfm?id=800078.802534

https://doi.org/10.1109/ICSE-COMPANION.2009.5070980
https://doi.org/10.1109/ICSE-COMPANION.2009.5070980
https://doi.org/10.1145/3238147.3240471
https://doi.org/10.1007/s11219-009-9075-x
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/ESEM.2011.22
https://doi.org/10.1109/ESEM.2011.22
http://arxiv.org/abs/1901.07440
http://arxiv.org/abs/1901.07440
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.1145/3196321.3196334
https://doi.org/10.24963/ijcai.2018/314
http://aclweb.org/anthology/P/P16/P16-1195.pdf
http://aclweb.org/anthology/P/P16/P16-1195.pdf
https://doi.org/10.1109/ICSM.1992.242525
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://doi.org/10.1109/ICSE.2009.5070533
https://doi.org/10.1109/ICSE.2009.5070533
https://doi.org/10.1109/MSR.2017.63
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1145/1294261.1294276
http://www.sphinx-doc.org/en/master/
https://doi.org/10.1109/32.6171
https://doi.org/10.1109/ASE.2013.6693113
https://doi.org/10.1109/ASE.2013.6693113
http://dl.acm.org/citation.cfm?id=800078.802534

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach
	3.1 Selection of Open Source Projects
	3.2 Analysis of Comment Density

	4 Results
	5 Conclusion
	References

