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ABSTRACT
Source code comments are important for any software, but the basic
patterns of writing comments across domains and programming
languages remain unclear. In this paper, we take a first step toward
understanding differences in commenting practices by analyzing
the comment density of 150 projects in 5 different programming
languages. We have found that there are noticeable differences
in comment density, which may be related to the programming
language used in the project and the purpose of the project.
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1 PROBLEM AND MOTIVATION
Source code comments constitute an important part of any software,
which help people understand code and facilitate software mainte-
nance [18, 20]. To understand how programmers write comments
and find insights for improving software practices, existing studies
have analyzed comments from various perspectives, such as ratio of
comments [11], comment code co-evolution [3], and the purpose of
comments [14]. However, these studies are often limited in one pro-
gramming language, one or several projects and one specific aspect
of code comments. Meanwhile, the very basic pattern of writing
comments across domain and language remains unclear, while it
may greatly help software projects understand their position and
adjust their practices accordingly. The main reason might be that it
is not easy to access sufficient projects to make a comparison. In
particular, we may not be able to access a large amount of projects
and the effort to collect the needed data is significant. Recently,
the rise of large open source platforms such as GitHub and the
emergence of open source project databases like GHTorrent [4]
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and World of Code [10] enables large scale analysis of software
projects. Therefore, we set up to conduct a large scale investigation
of code comments and expect to help practices in various ways,
e.g., defining benchmark for comment density, locating where to
comment, and generating comments for code (e.g. [2, 7–9, 19]).

2 BACKGROUND AND RELATEDWORK
Programmers frequently write comments along with source code.
As a result, code comments form an important part of documen-
tation, providing additional information not immediately visible
from source code. Studies have shown that reading source code
with comments aid with program comprehension [18, 20]. Fur-
ther research reveals that the quality of comment itself, especially
the consistency between source code and comments, is crucial for
avoiding software bugs and improving maintainability [3, 16].

Because of the important role of comments in program compre-
hension, software quality and software maintenance, there have
been a number of studies that analyze comments in existing soft-
ware projects [1, 3, 5, 6, 13, 14]. However, existing studies either
focus on one programming language [5, 14] or one specific appli-
cation domain (e.g. operating systems [13]), or consider only one
specific dimension of comments (e.g. comment density [1], links
in comments [6]). To the best of our knowledge, no existing re-
search has focused on analyzing commenting practices and their
differences in a large number of heterogeneous projects.

3 APPROACH
We take an initial step towards understanding commenting prac-
tices across projects by addressing the following research questions:

• RQ1: Do projects practice commenting differently?
• RQ2: What may cause the differences?

3.1 Selection of Open Source Projects
We choose five most popular programming languages among 1000
most starred Repositories on GitHub (JavaScript, Java, C++, Python
and Go at the time of April 2019) and collect 30 most starred repos-
itories for each programming language. This is a relatively small
dataset for preliminary analysis and we plan to use the World of
Code [10] database in the future.

3.2 Analysis of Comment Density
To answer RQ1, we begin from one simple metric: comment density,
which has also been used to measure software maintainability [11]
and quality [15]. We plan to investigate more sophisticated metrics
in the future, such as vocabulary used in comments and distribution
of comments over program structures.
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Figure 1: Figures for Comment Density Analysis

We define comment density of a project as follows:

Comment Density =
Line of Comments

Line of Code
(1)

For each project, we count its lines of code and lines of comment
of its major programming language.

To answer RQ2, we propose the following hypothesis based on
existing literature and practical experiences:

(1) H1: The programming language used in a project may affect
its comment density.

(2) H2: The purpose of a project may affect its comment density.
(3) H3: Team size may affect the comment density of a project

because more people need to read the code.

4 RESULTS
RQ1: Do projects practice commenting differently? We find
that comment density varies greatly in the 150 collected projects
(avд = 0.2124, stddev = 0.1807,max = 1.2691,min = 0.003, ex-
cluding projects with no code at all). The most heavily commented
project has more lines of comments than source code (which is
java-design-patterns1, with 29414 lines of code and 37329 lines of
comments). On the other hand, comments in some projects are
extremely scarce, e.g., Font-Awesome2, with 73808 lines of code
and 240 lines of comments. The results suggest that projects do
have different commenting practices.

RQ2: What may cause the differences?
To confirmH1, we plot the average and median comment density

for different programming languages (Figure 1a). Since the distri-
bution is not normal, we conduct Wilcoxon signed-rank test on
languages pairs and find that the comment density of Python and
Java projects is significantly higher than C++, JavaScript and Go
projects (See Table 1 for original p-values). One possible explanation
is that there are widely adopted documentation generation tools
for Java [12] and Python [17], which specify a given set of rules
for programmers to write comments. The other three languages,
however, have no widely adopted rules for writing comments.

To confirm H2, we manually inspect 30 Java projects and 30
JavaScript projects in the collected dataset. We identify three major
purposes for which the project is used:

(1) Software Reuse. The project is a framework or a library,
which provides functions or solutions for other people to

1https://github.com/iluwatar/java-design-patterns
2https://github.com/FortAwesome/Font-Awesome/

Table 1: Original p-Values of theWilcoxon Signed-rank Test

Python Java C++ JavaScript Go

Python 1.0000 0.4420 0.0003 0.0034 0.0008
Java 1.0000 0.0027 0.0115 0.0043
C++ 1.0000 0.7227 0.7562

JavaScript 1.0000 0.9764
Go 1.0000

Table 2: Average Comment Density by Project Purpose

Education Software Reuse Application

Java 0.5751 0.2739 0.0641
JavaScript 0.2650 0.1760 0.1050

reuse in their own applications (e.g. Vue.js3, a progressive
web framework for developers to build web applications).

(2) Application. The project is a complete and ready-to-use ap-
plication for interested users (e.g. proxyee-down4, an HTTP
downloader implemented in Java).

(3) Education. The project is set up for educational purposes.
Users of this project are supposed to understand and learn
from the source code (e.g. Android-CleanArchitecture5, an
example to learn how to architect an Android application).

Table 2 summarizes average comment density of the three differ-
ent type of projects, for Java and JavaScript respectively. Projects
with educational purposes have the highest comment density, while
projects which are ready-to-use applications have the lowest, and
projects with software reuse purposes stay in the middle. One pos-
sible explanation is that, for educational projects, it is important to
have enough comments so that most users can understand the code.
For applications, only core developers need to read and understand
its source code and only a minimum amount of comments are nec-
essary. For reusable open source libraries and frameworks, users
occasionally need to read its source code to understand its usage
or find bugs, and thus they need to have a reasonable amount of
comments. However, we have to point out that the dataset is too
small to conduct any statistic significance tests. We plan to replicate
on a larger dataset in the future.

To confirm H3, we plot the number of contributors along with
comment density (Figure 1b). However, we fail to observe any
correlation that supports H3. Further investigation is needed to
reveal the relationship between comment density and team size.

5 CONCLUSION
We take a first step toward understanding the differences of source
code comments across various projects. We have found that there
are indeed noticeable differences in comment density of different
projects, which may be related to the programming language used
in the project and the purpose of the project. The result is promising
and we plan to further investigate this problem in the future.
3https://github.com/vuejs/vue
4https://github.com/proxyee-down-org/proxyee-down
5https://github.com/android10/Android-CleanArchitecture
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