An Extensive Study of Independent Comment
Changes 1n Java Projects

Abstract—While code comments are valuable for software
development, code often has low-quality comments or misses
comments altogether, which we call suboptimal comments. Such
suboptimal comments create challenges in code comprehension
and maintenance. Despite substantial research on suboptimal
comments, empirical knowledge about why comments are sub-
optimal is lacking, affecting commenting practice and related
research. We help bridge this knowledge gap by investigating
independent comment changes—comment changes committed in-
dependently of code changes—which likely attempt to address
suboptimal comments. We collect 23M+ comment changes from
4,410 open-source Java repositories and find that ~16% of com-
ment changes are independent, indicating a considerable amount
of comments may be suboptimal. Our thematic analysis of 3,600
randomly sampled independent comment changes provides a
two-dimensional taxonomy about what is changed (comment
category) and how it changed (commenting activity category).
We find some combinations of comment and activity categories
have a relatively high frequency although those comments are
not a large proportion of all comments; the reason may be that
some comments easily become obsolete/inconsistent. By further
inspecting extensive related materials for these independent
comment changes, and validating it with a survey of 33 developer
respondents, we find four reasons for suboptimal comments:
belief in future actions, lack of comment guidelines, ineffective use
of tools, and legacy. We finally provide implications for project
maintainers, researchers, and tool designers.

I. INTRODUCTION

Software developers frequently write commentsﬂ along with
source code. Comments are considered an essential form
of documentation [20], are present in almost all software
systems [15], [26], provide valuable information for program
comprehension [56]], [60], and are known to be especially help-
ful for developers to understand code written by others [41].
For example, Google’s coding style guide states, “comments
are absolutely vital to keep our code readable” [32].

However, comments do not directly impact software func-
tionality, so many comments may not have sufficient quality,
may not be properly maintained, or may be missing altogether.
In this paper, we use the term suboptimal comments to refer
to all such cases of comments with low quality (incon-
sistent, obsolete, useless, missing important information) or
even missing altogether. Such suboptimal comments create
challenges in code maintenance and reuse [S3[], [S7] but are
still prevalent in practice. For example, simple searches of
GitHub (in June 2020) return (1) 15K+ issues with “missing
Javadoc” in the title, where desired Javadoc comments are
missing; and (2) 204K+ issues with “outdated comment” in

I'Throughout this paper, the word “comment” refers to source code com-
ment, not other types of comment, e.g., comments in an issue report.

Missing JavaDoc #53
kamuffe opened this issue on 9 Nov 2017 - 9 comments

kamuffe commented on 9 Nov 2017 « edited by

appreciated v Contributor| (@

We had some issues replacing standard Vaadin MenuBar with your Addon. During investigation the
missing JavaDoc made it very hard to understand your code.

Please ad proper JavaDoc describing what your intention is.

Fig. 1. An example issue from GitHub reporting the problem brought by
missing Javadoc comments

the title. Figure [T] shows a real example issue where missing
Javadoc comments made it difficult to understand some code.

Despite prior research on suboptimal comments [17], [29],
(301, [350, 360, (400, (471, 1521, 1531, 1541, [55], [63], empir-
ical knowledge about why comments are suboptimal remains
sparse. Bridging this knowledge gap can help developers im-
prove comment quality, formulate best practices, and build bet-
ter tools. However, directly identifying suboptimal comments
remains challenging despite recent research progress. There is
no unified metric for comment quality [51]. Matching code
and comments is difficult in general [18], [59]], especially for
non-Javadoc comments; it is even harder to check if comments
and code are semantically consistent [17], [40], [S3], [S5],
and research on identifying inconsistent comments is limited
to specific scenarios, e.g., usage in Javadoc comments [17] or
TODO comments in specific format [40]]. Research on propos-
ing where to add comments is promising but preliminary [29],
[30], [36]. (More details in Section [VT).

Our key insight is that we can learn about suboptimal
comments by studying independent comment changes, which
modify only comments but not the code corresponding to the
comments. Such independent comment changes likely aim to
improve overall comment quality (by adding new comments,
updating existing comments or deleting poor comments). We
address the following research questions, which would help
bridge the knowledge gap about suboptimal comments.

« RQ1: How frequent are independent comment changes?
We collect 23M+ comment changes (12M+ Javadoc and
11M+ non-Javadoc comment changes) from commits of
4,410 open-source Java repositories. We find a consid-
erable amount of independent comment changes exist
broadly in these repositories. In particular, ~3.7M comment
changes are independent, accounting for ~16% of all com-
ment changes; independent Javadoc/non-Javadoc comment
changes range from 7.0%/7.1% to 22.4%/15.4% (inter-
quartile range) across the repositories.

o RQ2: What comments are often changed independently and
how are they changed?
We conduct a thematic analysis on randomly sampled
3,600 independent comment changes. We generate a two-
dimensional taxonomy that explains what is changed (we
identify four comment categories and 13 subcategories) and
how it changed (we identify six commenting activity cate-
gories). Some combinations of comment and activity have
a relatively high frequency although these comments are
not a large proportion of all comments, whose reason may
be some comments easily become obsolete/inconsistent, or
developers overlook certain comments.

« RQ3: Why are comments suboptimal?
We combine (1) a manual inspection of extensive materials
(including commit message, PR information and GitHub
issue if any, along with comment change) for independent
comment changes and (2) a survey of active developers (with
33 respondents from 400 developers). We summarize four
reasons why developers have suboptimal comments, includ-
ing belief in future actions, lack of comment guidelines,
ineffective use of tools, and legacy.

Our results reveal problems in commenting practices and
inspire several recommendations on formulating best practices,
building better tools, and conducting research (Section .
Our anonymized data is available at https://drive.google.com/
drive/folders/123rA_vV-_9x5]K8-70dzA6aP{JIXINaT.

II. METHODOLOGY

To learn about suboptimal comments, we study independent
comment changes, which likely aim to improve overall com-
ment quality. We retrieve all comment changes from thousands
of open-source repositories (Section [[I-A), identify indepen-
dent comment changes for RQ1 (Section [lI-B), establish a
taxonomy of them for RQ2 (Section [[I-C), and analyze their
underlying reasons for RQ3 (Section [lI-DJ.

A. Data Preparation

We first select sufficient representative repositories and
collect all comment changes from these repositories.

1) Selecting Repositories: We select repositories from
GitHub, considering several criteria. Following previous stud-
ies [22], [23], [59], we only target Java projects because of
Java’s maturity and popularity. We want to select repositories
with mature practices and rich development history so that the
commenting practices we observe would be common, and the
obtained lessons could broadly generalize.

We use Libraries.io [39] to obtain the GitHub repository
metadata. To exclude personal or toy repositories, we only
keep repositories with at least 10 stars, 10 forks, and 5
contributors, following a previous study [59]. We also exclude
forked repositories and eventually obtain 8,252 repositories
after this step. We further select repositories with more than
500 commits (following previous studies [25], [59]) to obtain
sufficient history that includes comment evolution. We obtain
4,465 repositories after this step. We then exclude repositories
that may not be real software projects, matching keywords

TABLE I
STATISTICS OF COMMENT-LINE CHANGES IN SELECTED REPOSITORIES

#Repositories 4,410
#Commits 28,020,418
#File changes of Java files 45,698,099
#File changes of Java files with a comment-line change 17,726,762
#Hunks with a comment-line change 28,980,802
#Added comment-lines 58,069,831
#Deleted comment-lines 46,494,429

LEINNT) ” LEINNT3

“guide”, “tutorial”, “pattern”, “note”, “code” and “interview”.
We also exclude repositories that we cannot clone at the start
of our study (Dec. 2019). We finally obtain 4,410 repositories.

2) Collecting Hunks with Comment-Line Changes: After
cloning these 4,410 repositories, we use git to retrieve all
commits in each repository. Each commit may have one or
several file changes, and we retrieve all changes of Java files.
Each file change has one or more hunks, and each hunk may
contain multiple added or deleted lines, which we call changed
lines. For each changed line, we determine whether it is a
comment-line—i.e., it contains a comment (fragment) or is
a part of a comment—using a script with two simple (but
accurate) heuristics. We first match an entire hunk using one
regular expression to see if the hunk contains a multi-line
comment, which may be a Javadoc comment; if so, we label all
the lines that match the regex as being comment-lines. We then
match each changed line using another regex to see if the line
contains an non-Javadoc comment. To evaluate our heuristic,
we manually check randomly sampled 1,000 hunks and find
the recall and the precision of our heuristic to be 97.6% and
100%, respectively, for the changed comment-lines. Table [I|
shows the statistics of comment-line changes.

B. Identifying Independent Comment Changes

To identify independent comment changes, we need to
decide whether a comment change is accompanied by changed
corresponding code. We employ two simple strategies for the
two types of comments, Javadoc and non-Javadoc comments.

For Javadoc comments, we consider only comments for
methods and classes, because for them we can find the corre-
sponding code. This code could be in other hunks, so when
any hunk in a changed file contains a Javadoc comment-line,
we analyze the entire file at once. For each changed Javadoc
comment, we check if any code line in the corresponding
method or class changed. If no code line changed, we consider
this comment change as an independent Javadoc comment
change. The mapping between hunks and Javadoc comments
may be many-to-many: one hunk may contain changes to zero,
one, or multiple Javadoc comments.

For non-Javadoc comments, we only exclude license head-
ers. Based on the finding that about 90% of comments are
about nearby code [24], we assume that code changes in
the same hunk would correspond to these comments, as git
applies complex heuristics to ensure one hunk contains all
nearby changes [7]. Thus, for non-Javadoc comments, we
determine whether all the lines in a hunk are comment-lines
or not. If yes, we consider the entire hunk as one independent

https://drive.google.com/drive/folders/123rA_vV-_9x5jK8-7odzA6aPfJIXINaT
https://drive.google.com/drive/folders/123rA_vV-_9x5jK8-7odzA6aPfJIXINaT

non-Javadoc comment change, even if multiple comment-lines
were added or deleted. In general, it would be hard to tell the
number of semantically separate comments there were actually
changed when a hunk has multiple comment-lines changed.

C. Construction of Taxonomy

With independent comment changes collected, we next
categorize these changes to study what comment elements are
changed and how. Understanding how independent comment
changes aim to improve overall comment quality can help
to understand how comments were suboptimal before the
changes. Specifically, we conduct a thematic analysis [19] of
sampled comment changes following the steps below.

(1) We distinguish six types of comment changes,
i.e., added/deleted/updated Javadoc/non-Javadoc comment
changes, and randomly sample 600 independent comment
changes of each type. In total we selected 3,600 independent
comment changes. In this paper, an added comment change
refers to a change that only contains new added line(s), a
deleted comment change refers to a change that only contains
deleted line(s), and an updated comment change refers to a
change that contains both added and deleted line(s).

(2) Three authors independently conduct comment analysis
following these steps: (a) Generate initial codes. For each
comment change, we carefully read the changed comment,
corresponding code, and related commit message, and we gen-
erated the initial codes that characterize the nature of changed
comments and how they are changed (commenting activity).
(b) Group initial codes that have similar key information.
All initial codes are organized into themes, suggesting the
nature of changed comments and how they are changed. At
the end of this step, we reviewed and merged similar themes.
(c) Define the final themes. We considered each theme (i.e.,
category of comment or commenting activity), whether it
contains sub-themes (i.e., subcategory), and how these sub-
themes interacted and related to the main theme.

(3) For conflicted codes and themes, the three authors would
discuss and the final judgement is made by a non-author
arbitrator who has more than six years of Java programming
experience and conducted similar qualitative analyses before.
We had a few comment changes that no author could under-
stand despite our best effort, so we labelled them as noise.

Eventually, we acquire a two-dimensional taxonomy of
independent comment changes that classifies these changes
based on what kind of information is changed (four cate-
gories/thirteen subcategories of comment) and how it changed
(six categories of commenting activity). During independent
labelling, the inter-rater reliability is 0.79 (Cohen’s Kappa),
which suggests a substantial agreement.

D. Identifying Reasons Behind Suboptimal Comments

We combine a manual inspection and a survey to understand
the reasons behind suboptimal comments.

1) Manual inspection: To understand the reasons behind
suboptimal comments, we manually inspect sampled 3,600
comment changes and their related materials for all categories.

For each comment change, we first collect all related materials
through GitHub, including commit messages, related issue
reports, and pull request information. Then we read these
materials for each category, and try to reveal the pattern
of commenting practice and the reason behind the practice.
For some categories, we find some patterns on commenting
practice, which leads us to the reasons behind suboptimal
comments, while for other categories we do not find any
pattern. Next, we merge similar patterns and extract the reason
behind these patterns. Eventually, we summarize four reasons
based on four patterns we discovered.

2) Survey of developers: We validate our four summa-
rized reasons through a survey of developers. We follow
the principles of Dillman et al. [21] to design the survey.
Based on our previously obtained four reasons, we design a
questionnaire that asks if developers witnessed the practices
related to the four reasons, whether they consider the practices
to negatively impact project maintenance and how they can
be improved. We first conduct a pilot study with four
researchers with experience on code comments and open-
source practices, and three software engineers with more
than five years of programming experience. According to
their feedback, we add comment examples in instructions and
eliminated questions that respondents had difficulty answering.
The final questionnaire includes three background questions
with demographic purpose, 19 choice questions that investigate
how developers behave in four scenarios related to the four
reasons and how they perceive current commenting practice
in these scenarios, and an open-ended question in the end for
collecting respondents’ additional “insights” and “experience”
beyond the scenarios we provide.

To find potential participants with recent software contri-
butions and are familiar with current commenting practices
in open-source communities, we selected developers who
have contributed more than 10 commits between January
2019 and December 2019. From the repositories we collect,
We select 6,059 developers and their email addresses. We
randomly sample 400 emails and survey them by sending
emails containing our online questionnaire’s link. Out of 400
emails, 22 could not be delivered. The survey ran for two
weeks, and we received 33 valid responses eventually. The
response rate is 8.7%, comparable to the response rate (6% to
36%) in other surveys of software engineering studies [49].

ITI. RESULTS
A. RQI: How frequent are independent comment changes?

Table [E summarizes the results of our analysis of 4,410
repositories. We find that 15.97% = (1951278+1795212) /
(12049563+11406209) of all comment changes are indepen-
dent. In fact, some comment changes could be committed
with irrelevant code changes, so the proportion of actually se-
mantically independent comment changes may be even higher
than 15.97%. This high number suggests that considerable
amount of comment changes are committed independently,
where comments were likely suboptimal before the changes
and changes likely aim to improve overall comment quality.

TABLE II
STATISTICS OF THE INDEPENDENT COMMENT CHANGES AMONG ALL COMMENT CHANGES

Added Deleted Updated All
#Javadoc comment changes All 6,223,588 3,914,606 1,911,369 12,049,563
Independent 1,025,688 (16.48%) 193,030 (4.93%) 732,560 (38.33%) 1,951,278 (16.19%)
#non-Javadoc comment changes All 5,089,020 2,934,565 3,382,624 11,406,209
Independent 410,496 (8.07%) 438,224 (14.93%) 946,492 (27.99%) 1,795,212 (15.74%)

-
o
g
o

4
@
4
o

o
o
o
o

o
>

Proportion
°
=

Proportion

!

Added Deleted Updated

ir

All

T

T

All

o
N
o
N

==

o
Added Deleted Updated

4
o
o
o

(a) Javadoc changes (b) non-Javadoc changes

Fig. 2. Proportion of independent comment changes in 4,410 repositories

Across types of comments, 16.19%/15.74% of Javadoc /-
non-Javadoc comment changes are independent. Across types
of comment changes, 16.48% /8.07% of Javadoc / non-Javadoc
added comment changes are independent, 4.93%/14.93% of
Javadoc/non-Javadoc deleted comment changes are indepen-
dent, and 38.33%/27.99% of Javadoc/non-Javadoc updated
comment changes are independent.

We find that independent comment changes exist widely
in almost all repositories. Specifically, Figure [2| shows the
distribution of the proportion of independent comment changes
to all comment changes in each repository. Across all 4,410
repositories, the median proportions are about 13% /6%, 2% /-
11%, and 29%/19% for independent Javadoc/non-Javadoc
comment changes that are added, deleted or updated, respec-
tively. Moreover, the proportion of independent Javadoc / non-
Javadoc comment changes ranges from 7.0%/7.1% (lower
quartile) to 22.4%/15.4% (upper quartile). Independent com-
ment changes exist widely: only 166/66 of 4,410 repositories
have 0% independent Javadoc/non-Javadoc comment changes,
while only 25 (0.5%) repositories have no independent com-
ment changes at all.

We conclude with the following finding:

Finding 1: About 16.0% of 23M+ comment changes
in the 4,410 studied repositories are independent, sug-
gesting a considerable amount of suboptimal com-
ments exist before the changes. Across these repos-
itories, the proportion of independent Javadoc/non-
Javadoc comment changes ranges from 7.0%/7.1%
to 22.4% /15.4% (lower to higher quartile), indicating
the prevalence of this phenomenon.

B. RQ2: What comments are often changed independently and
how are they changed?

As explained in Section [[I-C] we conducted a thematic
analysis of 3,600 independent comment changes. Eventually,

we discovered a two-dimensional taxonomy of independent
comment changes, with one dimension for categories of com-
ments and the other for categories of commenting activities,
as shown in Table [[Tl| The table has four categories (with
13 subcategories) of comments that are changed and six
categories of commenting activities for the changes. In each
cell, the number before ¢/’ is for Javadoc and the number after
for non-Javadoc.
The four categories of comments are the following:

e Code Logic: Comments that describe the code behavior;
subcategories: Functionality summary: Comments that
summarize the code functionality, including the functionality
of certain code fragments and the explanation for variables.
Context: Comments that provide the context information
of how code works, e.g., the condition under which the
code enters a particular branch. Usage: Comments that
describe how to use certain APIs, e.g., information related to
method parameters, return value, and exceptions in Javadoc.
Rationale: Comments that explain why the corresponding
code fragment is used or why a certain algorithm is applied.
Code file structure: Comments that describe the structure
of the code file and split different parts in a file.

« Under Development: Comments that mark work under
development or help developers in maintenance; subcate-
gories: TODO: Comments that document unfinished work
or unfixed bugs. Commented code: Commented source
code, including code that was used for testing/debugging
and code examples in Javadoc. Empty or Uninformative:
Comments that provide no useful information, e.g., @param
tags in Javadoc without explanation of the parameter.

o Tool Related: Comments that are related to corresponding
tools; subcategories: Auto-generated: Comments generated
by tools or IDE plugins. Deprecation: Deprecation informa-
tion in Javadoc, i.e., @deprecated tag, the reason why the
API is deprecated and the alternative. Directive: Comments
used by tools, e.g., marker for a static analysis tool to ignore
some code.

o Metadata: Comments that reveal code metadata; subcat-
egories: Log: Comments that document the author and
version information. Link: Links in comments, including
@see and @link tags in Javadoc and URL links.

Our comment taxonomy is inspired by the taxonomy of
Java comments proposed by Pascarella and Bacchelli [45],
but we make some important revisions, extending three of
their subcategories, merging two subcategories, and reorga-
nizing categories. In particular, our manual inspection finds
three kinds of comments that cannot fit in their taxonomy:
(1) comments explaining code structure, so we name the new

TABLE III
NUMBER OF JAVADOC / NON-JAVADOC COMMENT CHANGES PER CATEGORY. THE TOTAL SUM IS 3,878, GREATER THAN THE NUMBER OF INSPECTED
COMMENT CHANGES BECAUSE ONE CHANGE MAY INVOLVE MULTIPLE CATEGORIES, E.G., A NEWLY ADDED JAVADOC MAY CONTAIN BOTH
FUNCTIONALITY SUMMARY AND USAGE.

~Freq. Adding Deleting Adding Fixing Clarifying Formatting and
in [435] Entirely New | Obsolete Supplemen- | Inconsis- Description | Others
Comment Comment tary Info tency
Functionality Summary 40.5% 328 / 137 | 109 [/ 27 43 / 16 11 / 39 | 60 / 27 | Translation:
Context 1.5% 33 /73 8 / 30 24/ 24 8 / 68 6 / 22 12/ 12
Code Logic | Usage 23.9% 204/ 0 95 / 0 54 / 0 30 /0|27 / 0 | Adjusting lines and
Rationale 1.9% 9 [/ 47 2/ 3 0o/ 2 0o/ 4 0 / 4 | spaces:
Code File Structure 0.4% 0 / 31 0 / 29 na / na 0/ 8 0 / 1 300 / 157
Under TODO 1.4% 7 / 144 7 / 140 0 / 36 1 /7 0 0 / 21 | Updating tags:
Development Commented Code 2.5% 27 [118 6 / 286 5 /7 0 18 / O | na / na 0/6
Empty/Uninformative 0.7% 28 / 31106 / 10 na / na 2 / 0] na / na | Fixing typo:
Auto-Generated 1.6% 21/ 2 37 17 1 /7 0 0O/ 1| na / na 34793
Tool Related | Deprecation (Javadoc) 0.4% 14 / 0 19 /7 0 na / na na / na | na / na | Moving comments:
Directive 7.8% 10 / 56 44 7 21 na / na 0 / 1] na / na 0/5
Metadata Log 4.3% 30 / 7 83 / 17 11 /7 0 9 / 4] na / na | Noise:
Link 13.1% 547 12 47 | 42 9 / 0 68 / 16 | na / na 0/3
Sum 100% 765 / 630 | 563 / 612 | 147 / 78 | 147 /141 | 93 / 75 | 346 /276

subcategory Code File Structure, extending their subcategory
Formatter; (2) comments with URL links are not covered by
their subcategory Pointer, so we establish subcategory Link;
(3) comments that document the version information or the
time when code was introduced, so we establish subcategory
Log, extending their subcategory Ownership. We also merge
their subcategories Exception and Usage because the informa-
tion on exceptions is often tangled with usage. We reorganize
some of their categories to better accommodate added/merged
subcategories and to use more accurate names. For example,
we add all subcategories related to code logic together and
use Code Logic instead of their Purpose. For convenience
of comparison between comment frequencies in changes and
code files, we add the approximate ratio from [45] in a
column of Table[[II} For the new subcategories we propose, we
estimate the ratio using frequencies of subcategories in [45]]
with a similar but narrower definition.
The six categories of commenting activities are these:

« Adding New Comment: Introducing a new comment into
code files.

« Deleting Obsolete Comment: Deleting a comment.

« Adding Supplementary Information: Adding more infor-
mation to existing comments.

« Fixing Inconsistency: Fixing an inconsistency between
code and comment.

o Clarifying Description: Updating comments to just restate
the expression without introducing or deleting any informa-
tion.

« Formatting and Others: Changing the format of comments
or performing other minor activities.

To the best of our knowledge, ours is the first taxonomy for
commenting activities.

We can observe from Table that, some combinations
of comment and activity categories have higher frequencies
than others. Some are higher simply because these kinds
of comments are a large proportion of all comments, e.g.,
functionality summary and usage [45]. However, some other

categories of comment changes also have a relatively high
frequency, although these comments are not a large proportion
of all comments [45]. (1) Some comments have a much
higher frequency of deleting obsolete comments than adding
entirely new comments, e.g., commented code, empty or
uninformative, auto-generated, and log. These comments may
be fragile and easily become obsolete. (2) Some categories
have a relatively higher frequency of fixing inconsistency,
e.g., link and usage in Javadoc, and context in non-Javadoc.
These comments may easily become inconsistent with code.
(3) Though context and usage have a much lower ratio than
functionality summary in code files [43], they have a similar
frequency of adding supplementary info as in functionality
summary. The comparison may suggest that developers often
overlook context and usage when they add new comments,
making context and usage more likely to be missing or
insufficient in existing comments.
We conclude with the following finding:

Finding 2: We discover a two-dimensional taxonomy
with four categories (13 subcategories) of comments
and six categories of commenting activities, explaining
what comments and how change independently. Some
combinations of comment and activity have a relatively
high frequency although the comments are not a large
proportion of all comments; the reason may be that
some comments easily become obsolete/inconsistent,
or developers overlook certain comments when coding.

C. RQ3: Why are comments suboptimal?

As explained in Section by combining a manual
inspection of comment-change-related materials and a survey
with 33 developer respondents, we obtain four reasons for sub-
optimal comments: belief in future actions, lack of comment
guidelines, ineffective use of tools, and legacy.

1) Belief in future actions: One reason for suboptimal
comments is that developers believe that some comments are
temporary and will be changed in the future. We observe two
common scenarios. In one scenario, developers add comment
skeletons, believing they will be completed later, but that rarely
happens. In the other scenario, developers comment out code,
believing they may uncomment or delete it later, but actually
do not.

a) Adding Skeleton: In our manual inspection, we dis-
cover that developers add empty or uninformative comments,
but rarely complete and often delete them. Our analysis of the
commits for the 31 added empty or uninformative comments
(28/3 in Table[II) finds that developers often leave messages
about completing these skeletons in the future. For example,
in the commit 2ed2deal [11] in lieray/liferay-portal,
the commit message says “Jim knows to document this class.
I left the empty javadocs in there”, and the empty Javadoc is
indeed completed by another developer later [6]].

However, not all empty or uninformative comments are
completed eventually, and most are deleted uncompleted. For
example, we investigate how all newly added 28 empty or
uninformative Javadocs in Table [III| evolved. Of those 28, only
5 (17.9%) have been supplemented with more information,
while 23 (82.1%) still remain uninformative or were deleted
uncompleted. Table [IT] also shows that 106 empty or uninfor-
mative Javadocs were deleted in our sample, which account
for 18.8% of 563 deleted obsolete Javadocs, again showing
that many skeletons are just deleted rather than completed.

Leaving empty or uninformative comments appears to be a
common practice in open source. We run a script to identify
empty or skeleton Javadocs in the version of 4,410 Java
repositories retrieved for our study. We find that 195,525
Javadocs are empty, and 195,759 Javadocs are skeletons only
with empty Javadoc tags. These ~400k empty or skeleton
Javadocs account for ~2.5% of all 16M existing Javadocs.

b) Commented Code: Our manual inspection confirms
the common pattern that developers tend to first comment the
unused code snippets instead of deleting them directly, which
matches the finding from Pham and Yang [46] that the primary
motivation of commenting code is to mark it for later removal.
However, developers rarely maintain commented code timely,
and commented code is often deleted in batch.

We find considerable deletion of commented code. Our
sample contains 286 deleted commented code. The devel-
opers deleted this commented code likely because they
consider it useless, e.g., in the commit 8fba556e [3] in
bardsoftware/ganttproject, the commit message says
“[r]Jemoved meaningless comments and commented code”, and
the comment deleted commented code in several files.

c) Validation via survey: 63.6% of respondents report
that they have performed themselves or witnessed others leav-
ing comments that need further maintenance. Moreover, 52.4%
of respondents report that developers add these comments to
mark what should be updated in the future, while 28.6% report
that they added these comments without any specific purpose,
and 19.1% report that they expect others with expertise to

complete the comments. Respondents perceive that most of
these comments are not managed in the future: 52.4% of
respondents think Javadoc skeletons are most often ignored
and remain incomplete, 42.9% think commented code is most
often eventually deleted, and 33.3% think it is most often
ignored and remains commented. Moreover, most respondents
(57.6%) believe that introducing these comments negatively
impacts project maintenance. Respondents also suggest how
to improve current practice (more details in Section [[V-A).
We conclude with the following finding:

Finding 3.1: One reason for suboptimal comments
is that developers believe some comments such as
skeletons they add or code they comment out will be
managed in the future, but the followup is rarely taken.

2) Lack of comment guidelines: Some open-source com-
munities have their own guidelines for code conventions while
many others do not, and even those that have guidelines for
code conventions may not include guidelines for comment
writing. Some communities do have guidelines for comment
writing, e.g., the style guide [4] in Android requires that
“[yJou must add @params and @returns for each parame-
ter/return value”. In those open-source communities without
such guidelines, especially in small repositories, developers
may hold different ideas on writing comments, which may
lead to the missing or confusing comments.

We discover that two aspects, what to write and how to
write, often lead to suboptimal comments when missing in
guidelines.

a) What to write: When inspecting related materials
of comment changes that add entirely new comments or
supplementary info for code logic, we find the pattern that
developers do not add comments with code timely because
they do not realize which code deserves commenting. In a
repository without guidelines on what to write, developers may
miss some significant information during commenting.

Context and usage information are especially easily over-
looked by developers. Context and usage have a much lower
frequency than functionality summary in code files [45]]
and in the adding entirely new comment column in Ta-
ble [T} while they have an similar frequency in the col-
umn adding supplementary info. The comparison suggests
that context and usage are more likely to be overlooked
by developers than functionality summary when adding new
comments. For example, the commit 34d92ef6 in repos-
itory aosp-mirror/platform_frameworks_base states
“la]dded @throws tag in the javadoc for many APIs which
might throw a SecurityException in cases when such infor-
mation might be useful for the caller”, where the exception
information was overlooked before the change. If commenting
guidelines stipulate what to write, e.g., which APIs require
usage in Javadoc, the issue could be alleviated.

b) How to write: Without guidelines on how to write
comments, developers may use inconsistent terms or write

imprecise descriptions that require future updates. Moreover,
the format of comments may be inconsistent in the repository.

In our manual inspection, we find the pattern that some
changes do not modify the information in the comments but
just rephrase the description to make it easier to be under-
stood by others or to make terminology consistent with other
comments. For example, the issue #2789 [1] in repository
realm/realm-java raised the problem of inconsistent terms
in Javadoc and website documentation, and it is fixed in
pull request #2828 [14] that states “[t]his PR changes the
terminology on the Java side so object not in Realm are called
‘unmanaged’ everywhere”. In Table 93 /54 Javadoc/non-
Javadoc independent comment changes about code logic just
clarify description.

Moreover, in the last column of Table 24 comment
changes are translation and 457 comment changes just adjust
newlines or blank lines. These comment changes attempt to
unify the language and format of comments to improve the
readability of comments. The inconsistencies of language and
format may be brought by the lack of guidelines on how to
write comments.

c) Validation via survey: According to the survey, many
open-source communities do not have guidelines on com-
menting. 27.3% of respondents reported that the projects they
have participated in never had guidelines on commenting, and
42.4% reported that most of them had no such guidelines. The
survey also validates the negative impact of lack of comment
guidelines: 51.5% of respondents think that lack of comment
guidelines would negatively impact comment quality and code
maintenance. 78.8% of respondents think that commenting
guidelines should include what to document in comments
(what to write), while 54.5% and 48.5% of respondents think
the guidelines should also include the format and language
style (how to write), respectively. Respondents also provide
open opinions in “other” option. For example, a few respon-
dents comment on the guidelines and general principles: three
respondents think comments should be minimal and only doc-
ument the “non-obvious”, one states comment writers should
not “assume others can read your mind”. One respondent
expresses concern on the enforcement of guidelines, “...do not
see a better way except for peer review”.

We conclude with the following finding:

Finding 3.2: Lack of comment guidelines, especially
on what to write and how to write may lead to miss-
ing, inconsistent, or imprecise comments. Developers
write imprecise descriptions or use inconsistent terms,
format and language in comments, sometimes refining
these comments later.

3) Ineffective Use of Tools: We find that the ineffective use
of tools leads to suboptimal comments. In particular, comment
auto-generating tools may lead to uninformative comments
that do not explain code, and the inconsistencies in links and
annotations could be mitigated by using comment-checking
tools like Javadoc and Checkstyle but are often overlooked.

a) Comment Auto-generating Tools: In our manual in-
spection, we find that comments generated by comment auto-
generating tools can often be deleted as useless comments. The
pattern suggests that some use of comment auto-generating
tools may add uninformative comments.

In Table 21 newly added Javadocs and three non-
Javadoc comments in our sample appear to be generated by
automatic tools or IDE plugins, based on the commit message.
For example, the message of the commit fbccc3ed []
in comunes/kune says “JAutodoc code format’, indicat-
ing that developers used JAutodoc, an Eclipse plugin for
adding Javadoc automatically. Meanwhile, 37 auto-generated
Javadocs and seven non-Javadoc comments are deleted due
to being considered useless, based on the commit messages
for these comment changes. For example, in the commit
06£fe9f13 in AKSW/RDFUnit, the commit message says
“remove auto-generated useless comments”, and the commit
deletes generated comments in 203 files. According to our
manual inspection, deleted auto-generated Javadocs contain
the following two types: (1) Templates generated automat-
ically that only provide unimportant information, e.g., code
authorship and committed time. (2) Useless Javadocs that only
restate the method information already present in the signature.

b) Comment-Checking Tools: In our manual inspection
for comment changes that fix inconsistencies in usage and
link, we discover the pattern that developers tend to fix
these inconsistencies in batch following reported warnings
and errors from comment-checking tools like Javadoc and
Checkstyle, instead of fixing them timely in the same commit
when the code is changed. The pattern suggests that comment-
checking tools are often overlooked by developers, leaving
comments suboptimal.

Similarly, the inspection of comment changes that fix in-
consistencies in usage and link finds that some inconsistencies
can be detected by related tools like Javadoc and CheckStyle,
including inconsistent @param and Qreturn, and broken
@see and @link. From our inspection of commit messages
and related code, we find these tools can detect 13 deleted and
6 updated inconsistent usage tags in Javadoc, and 17 deleted
and 43 updated broken @see and @links. The warnings and
errors raised by the tools are not fixed in the commit where
the inconsistency was introduced; instead, developers tend to
fix them in batch. Of the aforementioned 79 fixes, 64% belong
to large commits containing many comment fixes (more than
10) to eliminate warnings from comment-checking tools. For
example, in the commit8e2abf97 [2] in apache/ambari,
inconsistencies between Javadoc and code in 46 files are fixed,
including unresolved references and wrong parameters.

c) Validation via survey: The survey responses show
that developers often use comment auto-generating tools and
comment-checking tools. 60.6% of respondents report that
they used or witnessed the use of comment auto-generating
tools, and the proportion for comment-checking tools is 78.8%.
Only 10% of respondents think comment auto-generating tools
can generate good comments, while 65% think they cannot.
34.6% of respondents think developers often ignore warnings

(or even errors) reported by comments checking tool, while
7.8% think they always ignore, 19.2% think they never ignore
and 19.2% think they rarely ignore. 81.0% of respondents
think developers ignore these warnings because they believe
most warnings are not critical, and 33.3% think developers
tend to accumulate minor issues and fix them together.

We conclude with the following finding:

Finding 3.3: The ineffective use of comment auto-
generating tools and comment-checking tools leaves
some suboptimal comments. Most comment auto-
generating tools only generate uninformative tem-
plates. Comment-checking tools can detect some cases
where the comment is inconsistent, but developers
often overlook their warnings and do not fix broken
comments timely. Developers ignore them considering
them not critical, and tend to accumulate many warn-
ings to fix them together.

4) Legacy: Log information, i.e., code authorship and ver-
sion information, is recorded in some comments. However, in
our manual inspection, developers tend to delete log informa-
tion. Some open-source repositories decide to stop writing log
information in comments for two reasons.

One reason is that it is hard to maintain, e.g., the author
tag in Javadoc, because multiple developers may touch the
corresponding method in an open-source community. An is-
sue [10] for RedHat says that “[t]he author tags in the java
files are a maintenance nightmare”. It also complains that
a large percentage of author tags are wrong, incomplete, or
inaccurate. Thus, it suggests to strip all author tags from Java
files.

The other reason is that its function can be replaced by
version-control systems like Git. Most of the change history
and code authorship can be obtained from version-control
systems, so it is unnecessary to document and maintain them in
comments. In the commit65ee0b5f [13] in Jasig/uPortal,
author tags in 1,400 files are removed and the commit message
says “[aJuthor tags are not as accurate as version control
history for knowing who authored a piece of code.”

a) Validation via survey: The survey shows that devel-
opers think log information in comments is hard to maintain
and can be replaced by version-control systems. 55.6% of
respondents believe that log information is hard to maintain as
the project evolves, while only 25.9% of respondents believe
it is unlikely. As for the question “[c]an the role of log infor-
mation in comments be replaced by version-control systems
such as Git”, 54.6% vote for “very likely”, 18.2% vote for
“likely”, while 12.1% vote for “unlikely” and nobody chooses
“very unlikely”. As for the solution, 69.7% of respondents
think stopping using log information in comments and deleting
obsolete comments would help, which is already applied by
some communities in our observation. 33.3% of respondents
think open-source communities should set specifications on the
use of log information in comments, and 27.2% of respondents
think a tool to detect and revise wrong or incomplete log

information may help. One respondent reports that s/he does
not think it is a problem, and one reports that s/he thinks
@since is much more important than Rauthor, “since it
conveys information about how the capabilities of the software
have changed”.

We conclude with the following finding:

Finding 3.4: Log information added in comments
often becomes legacy over time and gets deleted
eventually because it is hard to maintain, and version-
control systems can play the same role.

IV. IMPLICATIONS

Based on our findings, we discuss implications for project
maintainers, tool designers, and researchers.

A. Project maintainers

(1) Formulating commenting guidelines: Our study con-
firms the lack of commenting guidelines in open-source com-
munities and its negative impact on maintenance. Therefore,
we recommend communities to formulate their own comment-
ing guidelines with both general principles and actionable
rules, and enforce them in code review or via comment-
checking tools. For general principles, we advise core de-
velopers to suggest what should and should not be com-
mented, in a way that benefits the project the most, where
the specific philosophy might differ (e.g., only document
the “non-obvious” for internal modules, but detailed func-
tionality summary and usage information for every public
method). For actionable rules, we advise the following: add
due date in TODO (Section [II-CT)), do not commit incom-
plete skeleton (Section [[TI-C2] and [[IT-C3a), use consistent
terms(Section [[II-C2)), no @author tags(Section [[II-C4), use
English (Section [[II-C2)), and keep a consistent format (Sec-
tion [II-C2).

(2) Enhancing comment maintenance: Our study finds
that comments that need further maintenance are often ignored,
despite the developers’ belief that they (or others) may address
these comments and that developers find it harmful not to
address the comments. Therefore, we recommend developers
to also use ToDO mark for incomplete comments and com-
mented code, and use NOTE mark for easily outdated comments
(e.g., links [25]]). Developers should also regularly check and
maintain these comments manually or with automated tools.
Recently, Triglt [40] offers a promising approach in this
direction.

(3) Setting up CI pipelines: Our survey reveals that
developers perceive warnings generated by comment-checking
tools as not critical. However, we have identified a set of
comment smells (Section that are causing comment
maintenance problems, and the existing tools can check them
(e.g., Javadoc or Checkstyle). In particular, broken links in
@see and @1ink tags, and inconsistent @param and @return
can be detected by the existing tools. Given that these tools
are often highly configurable, we advise developers to use the

tools to specifically check these smells and even integrate the
checking of these problematic smells into CI/CD pipeline.

B. Tool designers

(1) Improving comment auto-generating tools: Our study
finds that developers are not satisfied with current comment-
generating tools. Some generated Javadocs are deleted be-
cause they only restate words in the method signature (Sec-
tion [[lI-C3a). These generated comments can be considered
trivial if they have a high coherence coefficient with code [31],
because they provide no additional information. Tool designers
may consider filtering those trivial comments before the tool
generates comments. The reason behind the trivial comments
is that current comment auto-generating tools only consider
textual information, while structural information could also
be considered. For example, Hu et al. [28] extract both lexical
and syntactic information Abstract Syntax Trees (AST) in
comment generation.

(2) Improving comment-checking tools: Our results reveal
that developers often ignore warnings or even errors reported
by comment-checking tools, where the comment is wrong
or broken. According to our survey responses, developers
ignore these warnings because they think most of them are
not critical (e.g., “[t]hey are often considered too minor to
even care.”). To address this problem, we suggest developers
stress these warnings related to wrong or broken comments
in a conspicuous way, and distinguish these critical warning
from other warnings. The tools could also offer suggestions
for fixing the problematic comments, e.g., as Spotless [3] does
for formatting issues.

(3) Improving version-control system (VCS): Our study
finds that log information is often deleted in comments because
it is hard to maintain and replaceable by VCS. For example,
most developers argue against using @author [9], [48] and
documenting change history in comment [12]. However, the
most widely used VCS, git, cannot fully replace or auto-
matically maintain @version and @since tags, despite their
potential usefulness (Section [[lI-C4). git also lacks structural
understanding of code. For example, git blame only tracks
last modification by line, but cannot tell when a code entity
(e.g. method) is introduced and by whom. Thus we encourage
tool designers to improve VCS to fully replace the use of log
information in comments.

C. Researchers

(1) Predicting where to comment: We find that some
comments are added independently because the correspond-
ing code has been already introduced and requires further
explanation. If we can predict where necessary comment is
need in the code file, the problem of missing comments can
be alleviated. Previous work [36], [29], [30] attempted to
address this problem. They used deep learning models to
predict the position of comments in code files and checked if
the output matched existing comments. We recommend more
work towards this direction, and also suggest that the comment

categories can be considered in predicting where to comment,
so developers can better understand why and what to comment.

(2) Detecting useless comment: We spot that some com-
ments are deleted because developers think they are useless in
our manual inspection. We check the commits with keyword
“useless” in commit message within our dataset batch, and
find these useless comments are uninformative or just restate
the obvious. Deleting useless comments is indeed a practice
developers would take in development. However, related re-
search on current commenting practice on useless comments is
missing. What comments are considered useless and why they
become useless is still unclear. This observation can motivate
researchers to study commenting practice on useless com-
ments. Developing automated tools to detect useless comments
would also be desirable.

(3) Comment generation: Our study finds that tools are
used to generate comments automatically by developers but
they are not satisfactory. Through manual inspection, we find
that all comment auto-generating tools (1) only target Javadoc
comments and (2) only generate functionality summary or
irrelevant log information. Related work [16], [27], [28],
[34], [38], [58] on comment generation mostly target the
method/function granularity as well. Therefore, we encourage
researchers to explore whether current models can work well
on a smaller granularity and to design models that can generate
inline comments for code snippets. The research literature also
mostly concerns generating functionality summary [16]], [27],
[28], [34], [38], [SO]. However, the taxonomy of the changed
comments we establish indicates that usage information is
often added and supplemented. Therefore, we encourage re-
searchers to study how to generate usage information for
important methods, i.e., generating explanations of parameters
and return value.

V. THREATS TO VALIDITY

Internal Validity: The independent comment changes we
extract from hunks using our method may still be related to
some code changes far way from the hunk or even changes
in another code file. However, accurate matching of comment
change to code change is still an open problem, and there is no
reliable way to detect whether a comment change is related to
a distant code change. Therefore, we decide to only consider
nearby code in our study, and adopt matching heuristics that
align with current best practices, e.g. Javadoc of a method
concerns the method body.

The definition of our taxonomy may contain ambiguities,
and the manual labeling is also prone to errors and conflicts.
To mitigate such threat, three labelers and one arbitrator
are included in this study, all with rich Java development
experiences. Furthermore, we iteratively discussed and refined
taxonomy definition and labeling criteria through several pilot
studies to ensure agreement and reproducibility in the final
taxonomy and labeling process.

We cannot guarantee completeness for the four identified
reasons behind suboptimal comments, because our manual
inspection reveals that many commits, issues, and PRs only

have incomplete or limited information that we cannot infer
reasons from them. Although we validate the identified reasons
through a survey, the survey also indicates other factors that
might lead to suboptimal comments, e.g., “No time or energy
for filling comments saying the obvious” as stated by one of
our survey respondents. We leave further investigations into
this problem for future work.

External Validity: Our study is based on a set of popu-
lar Java open-source projects from GitHub, which might be
unrepresentative of all Java open-source projects. To miti-
gate this threat, we adopt selection criteria from previous
studies [39], [25], which can select projects with diverse
backgrounds, sizes and domains. Still, the results of our
study may not generalize to proprietary Java projects as they
often adopt different practices compared with open-source
projects. Communities of other programming languages, such
as Python, C and JavaScript, may have different commenting
practices. However, the implications still appear to be helpful
for practitioners in proprietary Java projects and in projects
using other programming languages.

VI. RELATED WORK

The most related work to our study fits in two groups,
comment classification and comment code co-evolution.

A. Comment Classification

A variety of studies explore the nature of comments and
establish taxonomy for the explored comments. Padioleau et
al. [42] analyzed and proposed a taxonomy for comments in
operating system code, to find guidance for developing tools
for checking comments. Haouari et al. [24] defined a taxonomy
of comment content and relevance for investigation of devel-
opers’ commenting habits in Java. Maalej and Robillard [37]]
defined a taxonomy of knowledge patterns in API reference
documentation by inspecting Javadoc comments sampled from
JDK. Pascarella and Bacchelli [43]], [44] proposed a detailed
taxonomy of Java comment by manually classifying comments
sampled from six OSS repositories. Zhai et al. [61] proposed a
two-dimensional taxonomy of comments based on code entity
and content, which better facilitates automated classification,
propagation and program analysis, but is too coarse-grained
for obtaining empirical understanding. To better characterize
and understand independent comment changes, we propose a
two-dimensional taxonomy in which the comment dimension
is derived from [43], and the commenting activity dimension
is novel, not considered in any of the above studies.

The most related work to ours is Wen et al. [59]], which
explored how different types of code changes trigger comment
changes, and proposed a taxonomy of code-comment incon-
sistencies fixed by developers by analyzing 500 commits. Dif-
ferent from their commit-level classification on inconsistency-
fixing commits, our taxonomy is derived from hunk-level
classification on possible independent changes. Consequently,
our taxonomy provides insights not only on fixing code-
comment inconsistencies, but also on comment maintenance
and quality assurance in general.

B. Code-comment co-evolution

The research on code-comment co-evolution focuses on
three aspects: to what extent comments evolve with code [22],
[23], [31]], [33], how to detect outdated or inconsistent com-
ments [35], [40], [4701, 1520, 1531, 1541, (S50, [63], and how to
update comments automatically [43], [62].

Fluri et al. [22], [23] found from seven Java open-source
projects that 3~10% of the comment changes did not occur
in the same revision as the associated code changes. Mean-
while, we find that the average ratio of independent comment
changes, with no associated code changes in the same commit,
is about 16% in 4,410 Java open-source repositories, indicating
the omnipresence of suboptimal comments. Our results can
better represent the current situation in open-source develop-
ment.

Tan et al. [53]] proposed iComment, a system to extract
synchronization-related implicit rules in comments, which
represent the meaning of comments, and check if they match
the logic of code within the same method. Their work is
followed by @tComment [55], which checks whether de-
scription of parameters and exception matches corresponding
description in Javadoc comments. Nie et al. [40] proposed
a framework that can detect obsolete todo comments written
in a specific format when corresponding task is completed.
Our study complements empirical knowledge on suboptimal
comments, which may help related research better understand
the background of code-comment inconsistencies.

Liu et al. [62] proposed an approach to automatically
update comments based on the corresponding code change
and old comment, using a seq2seq model learned from a large
number of code-comment co-changes. We believe our work
can inspire more work in this direction, by complementing
empirical knowledge about how suboptimal comments are
really improved in practice.

VII. CONCLUSIONS

In this study we investigate independent comment changes
to understand the nature of suboptimal comments. We find
that 16% of 23M comment changes in 4,410 open-source Java
repositories are committed independently of corresponding
code, indicating considerable amount of comments may be
suboptimal. We develop a taxonomy through manual inspec-
tion with two dimensions: what kind of information is changed
and how it changed. The fragility of some comments and cer-
tain commenting tendency of developers may be the reason for
the frequency of comment and activity categories. Combining
our manual analysis with a developer survey, we discover four
reasons for suboptimal comments: belief in future actions, lack
of comment guidelines, ineffective use of tools, and legacy.
We provide insights for project maintainers, tool designers,
and researchers, and expect that our results help facilitate
commenting maintenance, and related tools and research.

REFERENCES

[1] “Align un-managed/standalone/un-persisted terminology - issue 2789 -
realm/realm-java,” https://github.com/realm/realm-java/issues/2789.

https://github.com/realm/realm-java/issues/2789

[2

[3

[t

[4

=

[5

=

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

“Ambari-19149. code cleanup: unresolved references in javadoc
- apache/ambari@8e2abf9,” |https://github.com/apache/ambari/commit/
8e2abf97bd2f10bad978d176a53bifd0ad2c7b67.

“Cleanup: bardsoftware/ganttproject@8fbas5,”
https://github.com/bardsoftware/ganttproject/commit/
8fba556e6¢184e9edefdf1e6d94d01d731add0a9.

“Code style guide | android open source project,” https://source.android.
com/devices/architecture/hidl/code- style#comments,

“diffplug/spotless: Keep your code spotless,” https://github.com/diffplug/
spotless|

“Edit trash handler javadoc liferay/liferay-
portal @50dfc68,” https://github.com/liferay/liferay-portal/

commit/50dfc689c56cd374a127b8d43232e5158912d8 1 e#dift-
40eb2a71dce39623893b24790df5f76d.
“git-diff - show changes between commits, commit and working tree,
etc,” https://git-scm.com/docs/git-diff,
“Jautodoc ; code format - comunes/kune@fbccc3e,” https://github.com/
comunes/kune/commit/fbccc3e47971e446b3261782a839d56886e1cb2d!
“Javadoc @author tag good practices,” https:/stackoverflow.com/
questions/17269843/javadoc-author-tag- good-practices.
“[jbrules-2895] strip all author tags from java files - red hat issue
tracker,” https://issues.redhat.com/browse/JBRULES-2895?_sscc=t.
“Jim knows to document this class. i left the empty javadocs in there
. - liferay/liferay-portal @2ed2dea,” |https://github.com/liferay/liferay-
portal/commit/2ed2deal0ca32f0319561173t45735047ce2ed92.
“Modification history in a file,” https://stackoverflow.com/questions/
638912/modification-history-in-a-file.
“Nojira: Remove author javadoc tags
jasig/uportal @65ee0b5,” https://github.com/Jasig/uPortal/commit/
65ee0b5t4a186ad38d6330b0108130d8e316a629.
“Objects not in realm are now called unmananged everywhere. by
cmelchior - pull request 2828 - realm/realm-java,” https://github.com/
realm/realm-java/pull/2828|
O. Arafati and D. Riehle, “The comment density of open source software
code,” in 2009 31st International Conference on Software Engineering-
Companion Volume. 1EEE, 2009, pp. 195-198.
A. V. M. Barone and R. Sennrich, “A parallel corpus of python functions
and documentation strings for automated code documentation and code
generation,” arXiv preprint arXiv:1707.02275, 2017.
A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezze,
and S. D. Castellanos, “Translating code comments to procedure spec-
ifications,” in Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2018, pp. 242-253.
H. Chen, Y. Huang, Z. Liu, X. Chen, F. Zhou, and X. Luo, “Automati-
cally detecting the scopes of source code comments,” Journal of Systems
and Software, vol. 153, pp. 45-63, 2019.
D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 2011 International Symposium on Empirical
Software Engineering and Measurement, 2011, pp. 275-284.
S. C. B. de Souza, N. Anquetil, and K. M. de Oliveira, “A study of the
documentation essential to software maintenance,” in Proceedings of
the 23rd annual international conference on Design of communication:
documenting & designing for pervasive information, 2005, pp. 68-75.
D. A. Dillman, J. D. Smyth, and L. M. Christian, Internet, phone, mail,
and mixed-mode surveys: the tailored design method. John Wiley &
Sons, 2014.
B. Fluri, M. Wursch, and H. C. Gall, “Do code and comments co-
evolve? on the relation between source code and comment changes,” in
14th Working Conference on Reverse Engineering (WCRE 2007). IEEE,
2007, pp. 70-79.
B. Fluri, M. Wiirsch, E. Giger, and H. C. Gall, “Analyzing the co-
evolution of comments and source code,” Software Quality Journal,
vol. 17, no. 4, pp. 367-394, 2009.
D. Haouari, H. Sahraoui, and P. Langlais, “How good is your comment?
a study of comments in java programs,” in 2011 International Sympo-
sium on Empirical Software Engineering and Measurement. 1EEE,
2011, pp. 137-146.
H. Hata, C. Treude, R. G. Kula, and T. Ishio, “9.6 million links in source
code comments: purpose, evolution, and decay,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). 1EEE, 2019,
pp. 1211-1221.
H. He, “Understanding source code comments at large-scale,” in Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software

[27]

(28]

[29]

[30]

(31]

[32

—

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

Engineering Conference and Symposium on the Foundations of Software
Engineering, 2019, pp. 1217-1219.

X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-
prehension, 2018, pp. 200-210.

——, “Deep code comment generation with hybrid lexical and syntac-
tical information,” Empirical Software Engineering, vol. 25, no. 3, pp.
2179-2217, 2020.

Y. Huang, X. Hu, N. Jia, X. Chen, Z. Zheng, and X. Luo, “Commtpst:
Deep learning source code for commenting positions prediction,” Jour-
nal of Systems and Software, p. 110754, 2020.

Y. Huang, N. Jia, J. Shu, X. Hu, X. Chen, and Q. Zhou, “Does your code
need comment?” Software: Practice and Experience, vol. 50, no. 3, pp.
227-245, 2020.

W. M. Ibrahim, N. Bettenburg, B. Adams, and A. E. Hassan, “On
the relationship between comment update practices and software bugs,”
Journal of Systems and Software, vol. 85, no. 10, pp. 2293-2304, 2012.
G. Inc. (2020) Google c++ style guide. [Online]. Available:
https://google.github.10/styleguide/cppguide.html

Z. M. Jiang and A. E. Hassan, “Examining the evolution of code
comments in PostgreSQL,” in Proceedings of the 2006 international
workshop on Mining software repositories, 2006, pp. 179-180.

A. LeClair, S. Jiang, and C. McMillan, “A neural model for gener-
ating natural language summaries of program subroutines,” in 2079
IEEE/ACM 41st International Conference on Software Engineering
(ICSE). 1IEEE, 2019, pp. 795-806.

Z. Liu, H. Chen, X. Chen, X. Luo, and F. Zhou, “Automatic detection of
outdated comments during code changes,” in 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC), vol. 1.
IEEE, 2018, pp. 154-163.

A. Louis, S. K. Dash, E. T. Barr, M. D. Ernst, and C. Sutton, “Where
should i comment my code? a dataset and model for predicting locations
that need comments,” in 2020 IEEE/ACM 42st International Conference
on Software Engineering (ICSE). IEEE, 2020.

W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference
documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264-1282, 2013.

L. Moreno, J. Aponte, G. Sridhara, A. Marcus, L. Pollock, and K. Vijay-
Shanker, “Automatic generation of natural language summaries for java
classes,” in 2013 21st International Conference on Program Compre-
hension (ICPC). 1EEE, 2013, pp. 23-32.

A. Nesbitt and B. Nickolls, “Libraries. io open source repository and
dependency metadata,” 2017.

P. Nie, R. Rai, J. J. Li, S. Khurshid, R. J. Mooney, and M. Gligoric,
“A framework for writing trigger-action todo comments in executable
format,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 385-396.

S. Nielebock, D. Krolikowski, J. Kriiger, T. Leich, and F. Ortmeier,
“Commenting source code: is it worth it for small programming tasks?”
Empirical Software Engineering, vol. 24, no. 3, pp. 1418-1457, 2019.
Y. Padioleau, L. Tan, and Y. Zhou, “Listening to program-
mers—taxonomies and characteristics of comments in operating system
code,” in 2009 IEEE 31st International Conference on Software Engi-
neering. 1EEE, 2009, pp. 331-341.

S. Panthaplackel, P. Nie, M. Gligoric, J. J. Li, and R. J. Mooney,
“Learning to update natural language comments based on code changes,”
arXiv preprint arXiv:2004.12169, 2020.

L. Pascarella, “Classifying code comments in java mobile applications,”
in 2018 IEEE/ACM 5th International Conference on Mobile Software
Engineering and Systems (MOBILESoft). 1EEE, 2018, pp. 39-40.

L. Pascarella and A. Bacchelli, “Classifying code comments in java
open-source software systems,” in 2017 IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR). 1EEE, 2017, pp.
227-237.

T. M. T. Pham and J. Yang, “The secret life of commented-out source
code,” in ICPC, 2020.

I. K. Ratol and M. P. Robillard, “Detecting fragile comments,” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 1EEE, 2017, pp. 112-122.
V. Ruzicka, “Stop using javadoc @author
vojtechruzicka.com/stop-using-javadoc-author-tag/.
E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T. Zimmermann,
“Improving developer participation rates in surveys,” in 2013 6th In-

tag,” https://www.

https://github.com/apache/ambari/commit/8e2abf97bd2f10bad978d176a53bffd0ad2c7b67
https://github.com/apache/ambari/commit/8e2abf97bd2f10bad978d176a53bffd0ad2c7b67
https://github.com/bardsoftware/ganttproject/commit/8fba556e6c184e9e4efdf1e6d94d01d731add0a9
https://github.com/bardsoftware/ganttproject/commit/8fba556e6c184e9e4efdf1e6d94d01d731add0a9
https://source.android.com/devices/architecture/hidl/code-style#comments
https://source.android.com/devices/architecture/hidl/code-style#comments
https://github.com/diffplug/spotless
https://github.com/diffplug/spotless
https://github.com/liferay/liferay-portal/commit/50dfc689c56cd374a127b8d43232e5f58912d81e#diff-40eb2a71dce39623893b24790df5f76d
https://github.com/liferay/liferay-portal/commit/50dfc689c56cd374a127b8d43232e5f58912d81e#diff-40eb2a71dce39623893b24790df5f76d
https://github.com/liferay/liferay-portal/commit/50dfc689c56cd374a127b8d43232e5f58912d81e#diff-40eb2a71dce39623893b24790df5f76d
https://git-scm.com/docs/git-diff
https://github.com/comunes/kune/commit/fbccc3e47971e446b3261782a839d56886e1cb2d
https://github.com/comunes/kune/commit/fbccc3e47971e446b3261782a839d56886e1cb2d
https://stackoverflow.com/questions/17269843/javadoc-author-tag-good-practices
https://stackoverflow.com/questions/17269843/javadoc-author-tag-good-practices
https://issues.redhat.com/browse/JBRULES-2895?_sscc=t
https://github.com/liferay/liferay-portal/commit/2ed2dea10ca32f0319561173f45735047ce2ed92
https://github.com/liferay/liferay-portal/commit/2ed2dea10ca32f0319561173f45735047ce2ed92
https://stackoverflow.com/questions/638912/modification-history-in-a-file
https://stackoverflow.com/questions/638912/modification-history-in-a-file
https://github.com/Jasig/uPortal/commit/65ee0b5f4a186ad38d6330b0108130d8e316a629
https://github.com/Jasig/uPortal/commit/65ee0b5f4a186ad38d6330b0108130d8e316a629
https://github.com/realm/realm-java/pull/2828
https://github.com/realm/realm-java/pull/2828
https://google.github.io/styleguide/cppguide.html
https://www.vojtechruzicka.com/stop-using-javadoc-author-tag/
https://www.vojtechruzicka.com/stop-using-javadoc-author-tag/

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

ternational Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE). 1EEE, 2013, pp. 89-92.

G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on
Automated software engineering, 2010, pp. 43-52.

D. Steidl, B. Hummel, and E. Juergens, “Quality analysis of source
code comments,” in 2013 21st International Conference on Program
Comprehension (ICPC). 1EEE, 2013, pp. 83-92.

M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or
to bug,” in 2008 ACM/IEEE 30th International Conference on Software
Engineering. 1EEE, 2008, pp. 251-260.

L. Tan, D. Yuan, G. Krishna, and Y. Zhou, “/* icomment: Bugs or bad
comments? */,” in Proceedings of twenty-first ACM SIGOPS symposium
on Operating systems principles, 2007, pp. 145-158.

L. Tan, Y. Zhou, and Y. Padioleau, “acomment: mining annotations from
comments and code to detect interrupt related concurrency bugs,” in
2011 33rd International Conference on Software Engineering (ICSE).
IEEE, 2011, pp. 11-20.

S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@ tcomment: Testing
javadoc comments to detect comment-code inconsistencies,” in 2012
IEEE Fifth International Conference on Software Testing, Verification
and Validation. 1EEE, 2012, pp. 260-269.

T. Tenny, “Program readability: Procedures versus comments,” [EEE
Transactions on Software Engineering, vol. 14, no. 9, pp. 1271-1279,
1988.

G. Uddin and M. P. Robillard, “How api documentation fails,” IEEE
Software, vol. 32, no. 4, pp. 68-75, 2015.

Y. Wan, Z. Zhao, M. Yang, G. Xu, H. Ying, J. Wu, and P. S. Yu,
“Improving automatic source code summarization via deep reinforce-
ment learning,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 397—-407.
F. Wen, C. Nagy, G. Bavota, and M. Lanza, “A large-scale empirical
study on code-comment inconsistencies,” in 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC). 1EEE,
2019, pp. 53-64.

S. N. Woodfield, H. E. Dunsmore, and V. Y. Shen, “The effect of modu-
larization and comments on program comprehension,” in Proceedings of
the 5th international conference on Software engineering. IEEE Press,
1981, pp. 215-223.

J. Zhai, X. Xu, Y. Shi, M. Pan, S. Ma, L. Xu, W. Zhang, L. Tan,
and X. Zhang, “Cpc: Automatically classifying and propagating natural
language comments via program analysis,” 2019.

M. Y. S. L. Zhongxin Liu, Xin Xia, “Automating just-in-time comment
updating,” in The 35th IEEE/ACM International Conference on Auto-
mated Software Engineering. ACM, 2020.

Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing apis documentation and code to detect directive defects,”
in 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). 1EEE, 2017, pp. 27-37.

	Introduction
	Methodology
	Data Preparation
	Selecting Repositories
	Collecting Hunks with Comment-Line Changes

	Identifying Independent Comment Changes
	Construction of Taxonomy
	Identifying Reasons Behind Suboptimal Comments
	Manual inspection
	Survey of developers

	Results
	RQ1: How frequent are independent comment changes?
	RQ2: What comments are often changed independently and how are they changed?
	RQ3: Why are comments suboptimal?
	Belief in future actions
	Lack of comment guidelines
	Ineffective Use of Tools
	Legacy

	Implications
	Project maintainers
	Tool designers
	Researchers

	Threats to Validity
	Related Work
	Comment Classification
	Code-comment co-evolution

	Conclusions
	References

