
MigrationAdvisor: Recommending Library
Migrations from Large-Scale Open-Source Data

Hao He∗, Yulin Xu∗, Xiao Cheng†, Guangtai Liang†, and Minghui Zhou∗§

∗Department of Computer Science and Technology, Peking University, Beijing, China
∗Key Laboratory of High Confidence Software Technologies, Ministry of Education, China

Software Analysis Lab, Huawei Technologies Co., Ltd., China†
Email: {heh, kylinxyl, zhmh}@pku.edu.cn∗, {chengxiao5, liangguangtai}@huawei.com†

Abstract—During software maintenance, developers may need
to migrate an already in-use library to another library with
similar functionalities. However, it is difficult to make the
optimal migration decision with limited information, knowledge,
or expertise. In this paper, we present MIGRATIONADVISOR,
an evidence-based tool to recommend library migration targets
through intelligent analysis upon a large number of GitHub
repositories and Java libraries. The migration advisories are pro-
vided through a search engine style web service where developers
can seek migration suggestions for a specific library. We conduct
systematic evaluations on the correctness of results, and evaluate
the usefulness of the tool by collecting usage feedback from
industry developers. Video: https://youtu.be/4I75W22TqwQ.

Index Terms—library migration, mining software repositories,
library recommendation, dependency management

I. INTRODUCTION

The wide adoption of open-source third-party libraries in

modern software systems is beneficial but also risky. Third-

party libraries may be abandoned by their maintainers, may

have license incompatibilities, or may fail to satisfy new

requirements due to absence of features, low performance,

etc. To address these issues, developers need to migrate an

already in-use library (i.e., source library) to another similar

or functionality equivalent library (i.e., target library) for

their software projects. Such activities are called as library
migration in the related literature [1]–[4].

However, it is often non-trivial to find target libraries and

choose the best target library for a software project. Existing

library comparison information on the Internet (e.g., blog

posts, forum discussions, community curated lists) are mostly

opinion-based, likely outdated, and inherently controversial.

Existing works on distilling library differences [5] and mining

similar libraries [6] may help quickly locate a set of possible

target libraries, but the former is still summarizing opinions

and the latter provides no evidence on the feasibility of a

migration. In practice, software projects rely heavily on core

developers for making the migration decision, but the decision

may be sub-optimal, especially when developers have limited

knowledge or experience with the candidate target libraries.

To address this situation, several approaches have been

proposed to mine existing library migrations from a large

corpus of software repositories [1], [2], [4]. The underlying

rationale is that historical migration practices provide valuable
§corresponding author.

reference and guidance for developers when they make migra-

tion decisions. However, the existing works suffer from either

low performance or limited scale which limits their usefulness

in practice (More details in Section VI).

In this paper, we present MIGRATIONADVISOR, an accu-

rate and evidence-supported library migration recommendation

tool to support decision making before conducting a library

migration in a Java project. Our tool works upon an advisory

database built from a large corpus of Java GitHub reposito-

ries and Maven artifacts. Given a source library that a user

wants to migrate for his/her project, it will generate a set

of candidate target libraries from the repositories, compute

a set of metrics for each candidate, and rank them using

a combined confidence value. Finally, the ranked candidate

targets and the possible migration commits for each target will

be returned for human inspection. We expect our tool to be

used by project maintainers to seek migration suggestions for

a library they are already using, evaluate between a set of

candidate target libraries, or support their migration decisions

for a specific target library. We also plan to integrate our tool in

an enterprise-level library management process which aims to

support and secure third-party library usage in IT companies.

We systematically evaluate the correctness of recommenda-

tion results in a technical paper [7], showing that our tool can

recommend migration target libraries with MRR of 0.8566,

top-1 precision of 0.7947, top-10 NDCG of 0.7702, and top-20

recall of 0.8939. We further invite several industry developers

to search libraries they know using our tool, and their feed-

back shows that the tool returns valid recommendations with

useful evidences. They also provide interesting comments and

insights for future research.

Our tool is available at http://migration-helper.net/. The

source code, data, evaluation scripts, and a RESTful backend is

available at https://github.com/hehao98/MigrationHelper. The

source code for frontend is available at https://github.com/

hehao98/MigrationHelperFrontend.

II. MIGRATIONADVISOR WORKFLOW

Figure 1 provides an overview of MIGRATIONADVISOR.

It has two major components: a data preparation component

and a data consumption component. The data preparation

component aggregates and processes repository and library

data from multiple sources, runs a recommendation algorithm

9

2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)

978-1-6654-1219-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE-Companion52605.2021.00023

Multi-Metric
Ranking

Algorithm

Repo 1,
pom.xml

Repo 2,
tool/pom.xml

Repo n,
pom.xml

JARs and
Metadata

Data Sources Intermediate Data Data for Recommendation

World of Code

download

Select

Select

Query

Repositories

retrieve

Dep Change Seqs

analyze

analyze

analyze

Library Database

parse

Metadata

API Signatures

Final Data

input

input
output

Advisory Database

Data Preparation Component Data Consumption Component

Project Maintainers
considering a migration

specify source libraries

query

return

inspect&
evaluate

Fig. 1. Overview of MIGRATIONADVISOR, with two major components. The data preparation component aggregates library and repository data for generating
the advisory database. The data consumption component is an interactive frontend where developers can search for migration advisories given a specific library.

for all libraries in the collected data, and stores the results

in an advisory database. The data consumption component

serves user requests when they seek migration advice for some

given source libraries. Given a source library, it will query the

advisory database and return a set of target libraries so that

the users can inspect and evaluate different migration targets.

A. Data Preparation

Given an ecosystem we want to support, the data preparation

component (Figure 1, left) aims to collect necessary informa-

tion, evidence and existing migrations from the development

histories of open-source projects. We choose to implement

our tool for Java and Maven because of their popularity and

industry importance. We use latest Libraries.io dataset [8] (last

updated January 2020) for selecting libraries and repositories

of interest, where we get a list of 184,817 distinct libraries (i.e.

Maven artifacts with distinct group ID and artifact ID) and a

list of 21,358 Maven managed non-fork GitHub repositories

with at least 10 stars and three pom.xml changes.

For each library, we retrieve its version information and

other metadata from Maven Central, resulting in 4,045,748

distinct library versions. For each version, we download its

corresponding JAR file from Maven Central, if it has one, and

extract all public classes from the JAR file. For each class, it

is transformed into a compact API signature document which

encodes all its public fields, methods, and inheritance relation-

ships. The documents are stored in a library database. Other

library metadata (e.g. versions, dependencies and descriptions)

are also stored in the library database for further use.

For each GitHub repository, we retrieve all its version

control data (i.e. commits, trees, blobs) from the World of

Code database [9] (version R, last updated in April 2020),

which includes all GitHub repositories mentioned before. We

use World of Code because it offers much higher performance

for analytical purposes, compared with directly cloning from

GitHub and analyzing with git. We then collect all pom.xml

files and all their historical versions in this repository. For each

pom.xml file, we iterate over all its historical versions and

compare with its previous version, to extract the dependency

changes happened in this version. By merging dependency

changes from different commits and branches, we generate

a dependency change sequence for each pom.xml file, which

contains all library adoption, removal and update histories for

this pom.xml file.

Given the data described above, the final migration advisory

database is generated by a multi-metric ranking algorithm

for migration target recommendation. For each library we

collect, the algorithm first generates a set of candidate tar-

get libraries by analyzing the dependency change sequences.

Then, it computes several metrics for each candidate: Rule

Support (RS), Message Support (MS), API Support (AS) and

Distance Support (DS). The metrics are intended to identify

real target libraries from the large number of false positives in

the initial set of candidates, by capturing different dimensions

of evidences from the collected data. More specifically, RS
captures frequently added and removed libraries in the same

commit; MS captures libraries that developers stated a mi-

gration in the commit messages; AS captures frequent code

changes between the method calls of two libraries; and DS
captures hints from commit topology. After that, it computes

confidence value from all metrics using a simple multiplication

confidence(libA, libB) = RS ·MS ·AS ·DS (1)

which represents the likelihood that the candidate library is an

eligible migration target for the source library. The algorithm

is detailed in a technical paper [7].

To enhance user experience, we also mark a subset of

ground truth migration advisories in the advisory database.

The ground truth comes from a systematic labelling process

detailed in [7], including source/target library pairs, migration

commits, and related pom.xml changes. The ground truth

migration advisories can also be extended and curated in a

crowd-sourced manner when more users use our tool.

Table I shows the statistics of the data used in current tool

implementation. The data can be periodically updated to reflect

latest trends in the open-source community.

10

TABLE I
STATISTICS OF THE DATABASE USED IN OUR TOOL. API COUNT IS AN

INTERMEDIATE DATA TABLE USED DURING METRIC COMPUTATION.

Data Type Count or Size Time to Construct
GitHub repositories 21,358 Several minutes
Commits with diffs 29,439,998 About 1 day
Parsed pom.xmls 10,009,952 About 1 day
Dep change seqs 147,220 Several hours
Libraries 185,817 Several minutes
Library versions 4,045,748 Several hours
Java classes 25,272,024 About 3 days
Non-zero API counts 4,934,677 About 2 weeks
Migration advisories 1,956,809 Several hours
Ground truth advisories 14,334 1 week (manually)
Database size (gzip dump) ∼50GB Several weeks

B. Data Consumption

The data consumption component (Figure 1, right) serves

as an interface to project developers and maintainers. Given

a source library to be migrated, it should provide informative

and interactive demonstrations of the migration recommenda-

tions from the advisory database. For current tool demo, it is

implemented as a search engine style web service, where users

can search for the migration targets of a specific library. Given

a search query, the web service will retrieve all target libraries

from the advisory database, sort them by the confidence value,

and return them in a paginated table where each table entry

demonstrates one target library. For each entry, users can

also extend the entry for more detailed information, including

library description, homepage, repository links, and GitHub

repositories/commits that may have performed a migration

from the given source library to the target library in this

entry. Interested users can click on the links to browse more

information about the target library and the migration commits.

III. IMPLEMENTATION

The data preparation component is implemented using a

combination of Java programs and Python scripts, where each

program or script implements one data processing stage (i.e.

an arrow) in Figure 1. All programs and scripts are executed

on one of the World of Code [9] server nodes, which is a Red

Hat Linux server with 2 Intel Xeon E5-2630 v2 CPUs, 400GB

RAM and 20TB storage. The total size of intermediate data

(i.e., library JARs and raw git objects) exceeds 4 TB, but they

are not needed for the data consumption component and can be

safely deleted once the analysis is finished. The library APIs,

library metadata, repository metadata, dependency change

sequences, the final migration advisories, and other relevant

data are stored in a local MongoDB instance (See Table I for

its statistics). The data consumption component only needs to

read from this database, so it is relatively lightweight and has

flexible deployment options. Currently, the frontend, backend,

and a MongoDB instance are hosted on an AWS virtual Linux

server with 2 CPU cores, 8GB RAM, and 200GB storage.

IV. TOOL USAGE

We expect MIGRATIONADVISOR to be used when project

maintainers discover that one of the libraries in their project

TABLE II
PERFORMANCE OF THE MULTI-METRIC RANKING ALGORITHM USED IN

MIGRATIONADVISOR, COMPARED WITH OTHER EXISTING APPROACHES.

Approach MRR Precision@1 NDCG@10 Recall@20
Teyton et al. 0.7335 0.6757 0.6909 0.6391
Alrubaye et al. 0.9412 0.9412 0.9412 0.0540
Our Approach 0.8566 0.7947 0.7702 0.8939

need to be replaced (due to license, security, internal industry

standards, etc). Suppose a developer wants to migrate from

org.json:json because its license is incompatible with

Apache 2.0 license. Using our web service, she can type

org.json:json in the search input and click the “Search”

button, as shown by the web page on the right part of Fig 1.

Then the service will return a list of recommended migration

targets, the top-3 being jackson, gson and fastjson. She

can immediately discover that jackson seems to be a good

choice because most projects migrate to jackson and it is

also licensed under Apache 2.0. If she is more prudent, she can

carefully investigate the migration commits and even combine

our tool with other approaches to make the final decision.

In the future, we plan to integrate this component with

existing third-party library checking software, either as an IDE

plugin or as part of a CI/CD process. When the checking soft-

ware identifies incompatible, deprecated, or banned libraries,

our tool will prompt migration advisories to help developers

quickly locate a target library that they can migrate to.

V. EVALUATION

Two aspects of MIGRATIONADVISOR are evaluated. The

first aspect is the correctness and completeness of migration

advisories (i.e. whether the returned results are real migration

targets and whether all migration targets are returned). The

second aspect is to what extent this tool is helpful for devel-

opers when they make migration decisions.

For the first aspect, we use the following common perfor-

mance metrics for evaluating information retrieval and ranking

problems: Mean Reciprocal Rank (MRR), top-k precision, top-

k recall and top-k Normalized Discounted Cumulative Gain

(NDCG). Table II shows the results of the algorithm used in

our tool and the results of two existing approaches [1], [4]

on the ground truth advisories. We can see from Table II that

the multi-metric ranking algorithm significantly outperforms

existing work, reaching MRR of 0.8566, top-1 precision of

0.7947, top-10 NDCG of 0.7702, and top-20 recall of 0.8939.

For the second aspect, we invite industry developers in

our social network1 to search libraries they know using our

tool, and collect their usage feedback through informal com-

munications. They provide positive feedback and interesting

insights about our tool. One developer replies that finding
replaceable and actively maintained software is what we really
need for legacy software. They also suggest that our tool

should return reasons for each recommendation, and issue

warnings when no migration target is available. However, we

also discover that only a small fraction of developers have
1This is done by sharing posts in a number of group chats (∼100 people

in total), but it is hard to count the exact number of developers reached.

11

Fig. 2. User geographic information and most frequently searched libraries

experience on library migrations, and one reason may be that

most developers we contact are in relatively junior positions

and have limited years of working experience, but it should

be explored in future research. By monitoring our website in a

two-month period, we record search attempts from 68 different

IPs. Figure 2 shows user geographic information and most

frequently searched libraries.

VI. RELATED WORK

Several existing tools and websites also aims to help de-

veloper select between libraries or conduct library migra-

tions, but they all have limitations in this problem context.

SimilarTech [6] recommends similar libraries through Stack

Overflow tag embeddings, but it provide no evidence on

the feasibility of migrations between the query library and

returned libraries. LibComp [10] is a metric-based comparison

tool for similar libraries, but it requires manual specifica-

tion of two libraries and cannot help developers when they

are unaware of a possible migration target. There are also

community efforts such as AlternativeTo2, a crowd-sourced

software recommendation website, and awesome-java3, a

community curated Java library list organized into many cate-

gories. Library comparison blog posts and forum discussions4

can be accessed using a search engine, and DiffTech [5] can

be used to aggregate community opinions of similar libraries

from online discussions. However, these approaches can only

return opinion-based results which are inherently controversial

and may not be trust-worthy. Despite their limitations, our

tool is not intended to fully replace any of the existing

approaches, but to enhance migration decision making through

providing objective evidence of historical migration practices.

Developers can refer to our tool and any existing approaches

above to make the optimal decision for his/her project.

Some existing approaches share the same objective as our

tool, but they suffer from performance issues which limit

their usefulness in practice. Teyton et al. [1] propose a

filtering-based approach on mining library migrations, but it

suffers from either low precision or low recall depending on

the filtering threshold. MigrationMiner [4] uses a different

filtering-based approach, but it is only evaluated on 16 GitHub

repositories (by contrast, 21,358 analyzed in our tool). To the

best of our knowledge, our tool is the first accurate, large-
2https://alternativeto.net/
3https://github.com/akullpp/awesome-java
4Unfortunately, the well-known Stack Overflow does not allow opinion-

based discussions including the topic of library comparison and selection (See
https://meta.stackoverflow.com/questions/255468/opinion-based-questions).

scale, and evidence-supported library migration recommenda-

tion tool being able to recommend migration target libraries

based on large-scale open-source data.

Other tools aim to support library migrations by providing

API mappings (e.g. SimilarAPI [11]) or directly transform

code to use the new library (e.g. Meditor [12]). Developers

can use the results of our tool as the input to these tools, to

improve development efficiency during library migrations.

VII. CONCLUSION

We present MIGRATIONADVISOR, an evidence-supported

library migration recommendation tool which works upon

a migration advisory database built from a large corpus of

GitHub repositories and Java libraries. In the future, we plan

to improve our tool from various perspectives, such as reason

extraction, cost estimation, and customized recommendation.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-

gram of China Grant 2018YFB1004201, the National Natural

Science Foundation of China Grant 61825201, and the Open

Fund of Science and Technology on Parallel and Distributed

Processing Laboratory (PDL) No.6142110810403.

REFERENCES

[1] C. Teyton, J.-R. Falleri, and X. Blanc, “Mining library migration graphs,”
in 2012 19th Working Conference on Reverse Engineering. IEEE, 2012,
pp. 289–298.

[2] C. Teyton, J.-R. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in Java,” Journal of Software: Evolution and Process, vol. 26,
no. 11, pp. 1030–1052, 2014.

[3] S. Kabinna, C.-P. Bezemer, W. Shang, and A. E. Hassan, “Logging
library migrations: A case study for the Apache software foundation
projects,” in 2016 IEEE/ACM 13th Working Conference on Mining
Software Repositories (MSR). IEEE, 2016, pp. 154–164.

[4] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “MigrationMiner: An
automated detection tool of third-party java library migration at the
method level,” in 2019 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2019, pp. 414–417.

[5] H. Wang, C. Chen, Z. Xing, and J. Grundy, “DiffTech: A tool for dif-
ferencing similar technologies from question-and-answer discussions,”
in Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2020, pp. 1576–1580.

[6] C. Chen and Z. Xing, “SimilarTech: Automatically recommend analog-
ical libraries across different programming languages,” in Proceedings
of the 31st IEEE/ACM International Conference on Automated Software
Engineering, 2016, pp. 834–839.

[7] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-
metric ranking approach for library migration recommendations,” in
Proceedings of the 28th IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2021.

[8] Libraries.io open data. [Online]. Available: https://libraries.io/data
[9] Y. Ma, C. Bogart, S. Amreen, R. Zaretzki, and A. Mockus, “World of

code: An infrastructure for mining the universe of open source VCS
data,” in 2019 IEEE/ACM 16th International Conference on Mining
Software Repositories (MSR). IEEE, 2019, pp. 143–154.

[10] R. El-Hajj and S. Nadi, “LibComp: An IntelliJ plugin for comparing java
libraries,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1591–1595.

[11] C. Chen, “SimilarAPI: Mining analogical apis for library migration,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, 2020, pp. 37–40.

[12] S. Xu, Z. Dong, and N. Meng, “Meditor: Inference and application of
API migration edits,” in 2019 IEEE/ACM 27th International Conference
on Program Comprehension (ICPC). IEEE, 2019, pp. 335–346.

12

