
A Large-Scale Empirical Study on Java Library Migrations:
Prevalence, Trends, and Rationales

Hao He
Department of Computer Science and Technology, Peking

University, and Key Laboratory of High Confidence
Software Technologies, Ministry of Education

Beijing, China
heh@pku.edu.cn

Runzhi He
Department of Computer Science and Technology, Peking

University, and Key Laboratory of High Confidence
Software Technologies, Ministry of Education

Beijing, China
rzhe@pku.edu.cn

Haiqiao Gu∗

Department of Physics, Tsinghua University
Beijing, China

ghq17@mails.tsinghua.edu.cn

Minghui Zhou2

Department of Computer Science and Technology, Peking
University, and Key Laboratory of High Confidence

Software Technologies, Ministry of Education
Beijing, China

zhmh@pku.edu.cn

ABSTRACT

With the rise of open-source software and package hosting plat-

forms, reusing 3rd-party libraries has become a common practice.

Due to various failures during software evolution, a project may

remove a used library and replace it with another library, which we

call library migration. Despite substantial research on dependency

management, the understanding of how and why library migra-

tions occur is still lacking. Achieving this understanding may help

practitioners optimize their library selection criteria, develop auto-

mated approaches to monitor dependencies, and provide migration

suggestions for their libraries or software projects. In this paper,

through a fine-grained commit-level analysis of 19,652 Java GitHub

projects, we extract the largest migration dataset to-date (1,194 mi-

gration rules, 3,163migration commits).We show that 8,065 (41.04%)

projects having at least one library removal, 1,564 (7.96%, lower-

bound) to 5,004 (25.46%, upper-bound) projects have at least one

migration, and a median project with migrations has 2 to 4 migra-

tions in total. We discover that library migrations are dominated by

several domains (logging, JSON, testing and web service) presenting

a long tail distribution. Also, migrations are highly unidirectional

in that libraries are either mostly abandoned or mostly chosen in

our project corpus. A thematic analysis on related commit mes-

sages, issues, and pull requests identifies 14 frequently mentioned

migration reasons (e.g., lack of maintenance, usability, integration,

etc), 7 of which are not discussed in previous work. Our findings

can be operationalized into actionable insights for package hosting

platforms, project maintainers, and library developers. We provide

a replication package at https://doi.org/10.5281/zenodo.4816752.

∗Works done at Peking University
2Corresponding Author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’21, August 23ś28, 2021, Athens, Greece

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8562-6/21/08.
https://doi.org/10.1145/3468264.3468571

CCS CONCEPTS

· Software and its engineering→ Software libraries and repos-

itories; Maintaining software; Software evolution.

KEYWORDS

librarymigration, mining software repositories, evolution andmain-

tenance, empirical software engineering

ACM Reference Format:

Hao He, Runzhi He, Haiqiao Gu, andMinghui Zhou. 2021. A Large-Scale Em-

pirical Study on Java Library Migrations: Prevalence, Trends, and Rationales.

In Proceedings of the 29th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering (ESEC/FSE

’21), August 23ś28, 2021, Athens, Greece. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3468264.3468571

1 INTRODUCTION

Reusing existing 3rd-party libraries1 with ready-to-use features has

long been a common practice in software development, which can

increase software quality and development productivity [49]. Still,

it is not until the rise of open-source software and the availability

of central hosting platforms (e.g. Maven [50], NPM [52], PyPI [29],

etc) in the recent decade that software reuse becomes so easy for

both library users and library developers. The number of newly

published JARs on Maven Central has grown from 86,161 in 2010

to 364,218 in 2015 and 1,435,600 in 2020 [50]. As a result, 3rd-party

libraries are widely adopted in both open-source and proprietary

software projects, and a non-trivial software project often reuses

dozens or even hundreds of existing libraries [76, 80].

Meanwhile, the adoption of 3rd-party libraries brings unique

challenges in the entire software life-cycle [20]. First, given the

wide spectrum of available libraries, even the task of choosing the

right library for a specific purpose becomes non-trivial in which

1Developers use different terms interchangeably, such as libraries, packages, dependen-
cies, components, frameworks, etc, to refer to a piece of reusable software (e.g. a JAR
file [54]) available for download in a central hosting platform (e.g. Maven Central [50]).
For consistency, we use the term łlibraryž to refer to the reusable software itself, and
the term łdependencyž to emphasize that it is used by another software project.

478

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.5281/zenodo.4816752
https://doi.org/10.1145/3468264.3468571
https://doi.org/10.1145/3468264.3468571

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

complex socio-technical factors need to be considered [55, 78]. Sec-

ond, increasing concerns are being raised about the risk of using

outdated libraries as they may contain security vulnerabilities and

unresolved issues [1, 24, 56, 86], challenging the conventional strat-

egy of łif it ain’t broke, don’t fix it.ž Consequently, researchers study

the characteristics, reasons, and drivers of library updates [7, 43, 84]

and practitioners propose industry solutions (e.g. Synk [45], White-

Source [64], and GitHub Advisories [32]) that aim to keep libraries

up-to-date and vulnerability-free. However, failures or misalign-

ment with a library inevitably happens and may not be resolvable

by updating its version. In such cases, the library has to be com-

pletely removed and replaced by another library, which are called

library migration in the literature [35ś37, 69, 71].

While a large body of existing researches are conducted to charac-

terize and understand library adoption [22, 39, 44, 47, 55, 78, 81, 83],

and library updates [7, 15, 19, 23, 27, 42, 43, 48, 65, 84, 86], researches

on library migrations [2, 5, 6, 37, 69, 71] are still fragmented and

incomplete. More specifically, we lack understanding on: 1) how

a large number of projects migrate their dependencies as a whole,

and 2) what factors drive such migrations. As the ultimate con-

sequence of library adoption failures, such understanding will be

a valuable source of information for developers, decision makers,

and stakeholders. It may help them optimize their library selection

criteria, develop automated approaches to monitor dependencies,

and provide migration suggestions for their libraries or software

projects. To bridge this knowledge gap, we seek to conduct a de-

scriptive mixed methods study on large-scale open-source data to

holistically understand how and why library migrations happen.

More specifically, we ask the following research questions:

• RQ1: How common are library migrations?

• RQ2: How do migrations happen between libraries?

• RQ3: What are the frequently mentioned reasons when de-

velopers conduct a library migration?

We face several challenges when answering these research ques-

tions. First of all, the parallel and distributed nature of git-based

development presents unique peculiarities [9] in an attempt to re-

construct accurate library change histories for a specific project.

Second, it is difficult to precisely define łlibrary migrationž and

identify library migrations in commit history, while existing stud-

ies [69, 71] suffer from methodological limitations (details in Sec-

tion 2). To address these challenges, we propose an event-based

dependency change model, formulate library migration based on

dependency changes and self-admitted commit messages, retrieve

migrations using a state-of-the-art mining algorithm [36], and an-

alyze migration frequency using upper-bound and lower-bound

estimations. By applying our method on 19,652 Java projects and

4,022 libraries, we extract 2,629,992 dependency changes and 3,163

migration commits (the largest dataset compared with previous

works in Table 1). We conduct exploratory data analysis for RQ1-2,

and apply thematic analysis [11, 21] to migration-related commits,

issues, and pull requests to answer RQ3. The key findings are:

(1) Both library removals and migrations are prevalent in the

19,652 Java projects, in which 8,065 have at least one library

removal and 1,564 (lower-bound) to 5,004 (upper-bound)

have at least one library migration. They are more likely

to happen among projects with larger number of commits

and dependencies. A median project with library removals

has one removal per 139 commits and a median project with

migrations has 2 to 4 migrations in total.

(2) Librarymigrations from four domains (logging, testing, JSON,

and web service) dominate the dataset, presenting a long

tail distribution. And, migrations are highly unidirectional

in that libraries within the same domain are either mostly

abandoned or mostly adopted in the studied projects.

(3) Projects conduct library migrations for 14 different library-

side and project-specific reasons. We identify 7 reasons not

discussed in previous works. The most frequent reasons

include lack of maintenance, feature, usability, integration

with project context, and simplification of dependencies.

Based on our findings, we summarize actionable insights for

package hosting platforms, project maintainers, and library devel-

opers, including how to formulate and publicize best practices, how

to select and integrate libraries, what to do with unmaintained

libraries, and what to prioritize for library development. We also

identify aspects where current tooling support does not suffice and

suggest future research directions.

We provide a full replication package at Zenodo.2 The scripts

and documentation can also be accessed in this GitHub repository.3

2 BACKGROUND AND RELATED WORK

Migration is a common phenomenon during software maintenance,

which may refer to different development activities that stem from

various motivations. Common cases of migration include: migrat-

ing from one version to another version [43], one API to another

API [4], one programming language to another programming lan-

guage [85], one platform to another platform [79], or one library

to another library [36, 37, 69, 71]. In this paper, we use the term

library migration to refer to the process of replacing one library

with another4 functionally similar or equivalent library. Given a

library migration from library 𝑙1 to library 𝑙2, we refer to 𝑙1 as the

source library, 𝑙2 as the target library, and ⟨𝑙1, 𝑙2⟩ as a migra-

tion rule in the subsequent paper.

Three steps are typically required for a library migration: justi-

fying the necessity of a migration, finding the best target library,

and modifying the code to use the new library. For open-source

projects, the first two steps are often facilitated through public

discussions in issue trackers, where the benefits and costs are eval-

uated by developers [37]. Such discussions may not result in a

migration if no consensus is reached or the perceived benefits do

not outweigh the costs [37]. The cost mainly comes from the third

step, which is known to be tedious, error-prone, and sometimes

difficult [4, 13]. There are efforts that aim to improve development

efficiency for the third step, by using API wrappers [5, 6], mining

API mappings [3, 4, 13, 70], or directly editing code to use the new

API [17, 82]. Studies also show that library migrations may improve

code quality [2], but performance is rarely improved [37].

In this paper, we focus on understanding the first two steps of

library migration, following existing studies [37, 69, 71] (Table 1).

2https://doi.org/10.5281/zenodo.4816752
3https://github.com/hehao98/LibraryMigration
4More precisely, by another we mean the names (i.e., groupId:artifactId in Java)
of the two libraries are different.

479

https://doi.org/10.5281/zenodo.4816752
https://github.com/hehao98/LibraryMigration

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 1: Summary of Related Work on Library Migration

Paper Subject of Study Reported Prevalence Reported Reasons

Teyton et al. [69] 80 migration rules N.A. convenience, outdated, incompatibilities

Teyton et al. [71] 329 migration rules, 1,198 migrations,

26 commit messages

5.57% of 15,168 projects feature, performance, configuration, bug, envi-

ronment

Kabinna et al. [37] 49 logging library migration attempts

(33 successful)

33 of 223 ASF projects

(14.80%)

feature, performance, flexibility, reduce future

maintenance, reduce dependencies

Teyton et al. [69] propose the concept of migration graph and a

method to minemigration graph from software releases, where they

get 80 migration rules and three reasons from real-world examples.

In their subsequent study [71], they use a modified approach on

the commit history of 15,168 projects and get 329 migration rules,

1,198 migrations and 26 commit messages that mentioned migra-

tion reasons. Kabinna et al. [37] analyze developer discussions of

logging library migrations in Apache Software Foundation (ASF)

projects, where they identify 49 migration attempts and five major

reasons. However, the existing studies [37, 69, 71] have several limi-

tations. In particular, [69] only obtain a small number of migrations;

[69, 71] do not have a solid methodology foundation and are hard

to reproduce. By their definition, a library migration happens if two

libraries with similar functionalities co-exist and one gets removed

in project history. The notion of łsimilarž is ambiguous and łli-

brary migrationsž by this definition may be over-estimations. They

also do not provide sufficient details about their manual identifica-

tion criteria, nor do they share their dataset of library migrations.

Furthermore, [71] uses only source code analysis for identifying

libraries, which may miss migrations that only modify configura-

tion files (e.g., migrate logger5 or database6). Finally, [37] focuses

on a relatively small number (49) of logging library migrations.

Consequently, the findings in [37] cannot reflect general trends and

may not generalize to other kind of libraries. In this study, we mine

large-scale historical data to provide a comprehensive overview of

how and why library migrations happen among a large number of

projects and libraries.

Our work is also partially inspired by recent studies on library

adoption [22, 39, 44, 47, 55, 78, 81, 83] and library updates [7, 15, 19,

23, 27, 42, 43, 48, 65, 84, 86]. In terms of library adoption, researchers

use interviews and surveys to summarize developer considerations

when choosing JavaScript frameworks [55], deciding whether to re-

implement [81], and selecting libraries in general [78]. Researchers

also employ different modeling approaches to identify factors that

lead to adoption between R dataframe libraries [47] and between

JavaScript CI/CD tools [39, 44, 83]. In terms of library update, re-

searchers have investigated how developers update [7] or not up-

date libraries [19, 23, 42, 43, 65, 84], mechanisms to support library

update [27, 48], and the impact of security vulnerabilities intro-

duced by outdated libraries [24, 86]. However, they do not consider

migrations between different libraries, and our study can comple-

ment existing researches by providing findings about how previous

library adoptions fail in projects and why developers choose to

replace a library instead of updating it.

5https://github.com/eclipse/leshan/commit/d103207
6https://github.com/mybatis/migrations-maven-plugin/commit/1b1c609

3 DATA COLLECTION

3.1 Collecting Projects and Libraries

We begin with the latest Libraries.io dataset [38] (released in Jan

2020), which is widely used in related research (e.g. [1, 25, 36, 84]).

We choose to focus on Java projects because of Java’s popularity

and industrial importance, and because all previous works in this

topic focus on Java [37, 69, 71]. We consider a repository on GitHub

as a project and use the GitHub repository list in the dataset to

select relevant repositories. As a simple threshold for ensuring the

quality of selected repositories, we select non-fork Java repositories

with more than 10 stars, leaving us with 59,475 repositories. We do

not filter by the number of commits and recent activities because

the goal of our study is to depict general longitudinal trends, not to

observe the state-of-the-art practice by mature projects. Then, to

retrieve version control data for these projects, we use the World

of Code database [46] (version R, constructed in April 2020). To

simplify the task of dependency extraction, we focus on projects

that use Maven [30] for build and dependency management. These

projects contain one or several configuration files named pom.xml

in their project paths, which has a <dependencies> section where

developers declare the group IDs, artifact IDs, and version numbers

of required libraries. The declarations are strict in that a build

attempt will fail if a used library is not declared or included as a

transitive dependency, but an unused library may still be declared,

which is a threat to validity (Section 7.2). By keeping repositories

with at least one pom.xml file in one of the repository’s commits,

we retain 19,652 repositories (23,988,437 commits in total).

The dependencies declared in project pom.xml files may not fit

the definition of a łlibrary,ž because they may be internal project

modules not intended for reuse by other projects. To filter out such

cases, we only consider dependencies that 1) are accessible inMaven

Central [50], and 2) have been included in the pom.xmls of more than

10 repositories in the aforementioned 19,652 repositories. Finally,

we get 4,022 libraries.7 We sample 94 libraries (confidence level

= 95%, confidence interval = 10) and determine whether they are

libraries or not by inspecting their descriptions in Maven Central

and searching them on theWeb. Ninety-three of 94 samples (98.93%)

contain public information indicating their appropriateness of reuse

(e.g., terms such as library, framework, platform, specification, etc),

which justifies our selection criteria.8

7Following general conventions, we consider a unique (group ID, artifact ID) pair as a
library, and the version string for distinguishing different versions of a library.
8The only exception is io.prometheus:simpleclient_common which describes itself
as common code used by various modules of the simpleclient.

480

https://github.com/eclipse/leshan/commit/d103207
https://github.com/mybatis/migrations-maven-plugin/commit/1b1c609

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

Figure 1: An example project commit history.

3.2 Computing Dependency Changes

With projects and libraries collected, our next task is to extract

dependency changes from project commit histories, as these depen-

dency changes may indicate library migrations. However, simply

sorting and comparing all versions by time for a given pom.xml

file will generate too many false positives because a project may

have many parallel branches which may or may not be merged,

effectively forming a directed acyclic graph [9] (DAG, see Figure 1).

To take the DAG into consideration, we model each dependency

change as an event happened in one commit, which can be ei-

ther an adoption, a removal, or a version change. The event is

computed from comparing with the prior pom.xml file version in

the parent commit. More precisely, let commit 𝑐1 be the parent

of commit 𝑐2, 𝐿1 be the set of dependencies in pom.xml file 𝑓 of

commit 𝑐1, and 𝐿2 in file 𝑓 of commit 𝑐2. For 𝑐2, the set of adoptions

𝐷+
𝑐2 = 𝐿2 − 𝐿1; the set of removals 𝐷−

𝑐2 = 𝐿1 − 𝐿2; and the set of ver-

sion changes 𝐷𝑣
𝑐2 = {𝑙 | 𝑙 ∈ 𝐿1∧ 𝑙 ∈ 𝐿2∧𝑣𝑒𝑟 (𝑙, 𝑐1) ≠ 𝑣𝑒𝑟 (𝑙, 𝑐2)}. For

𝑐2 in Figure 1, 𝑓 = tool/pom.xml, 𝐷+
𝑐2 = {org.slf4j:slf4j-jdk14},

𝐷−
𝑐2 = {log4j:log4j}, and 𝐷𝑣

𝑐2 = {org.slf4j:slf4j-api}. We ig-

nore merge commits based on the assumption that merge commits

are seldom used for making new changes other than conflict res-

olution. To validate this assumption, we collect merge commits

with pom.xml diff from all repositories (207,553 in total, 8.2% of all

merge commits), and find that only 6,801 (3%) have new dependency

changes. Through an iteration over all commit diffs of all projects,

we get 2,629,992 dependency changes from 302,774 commits.

3.3 Identifying Library Migrations

The dependency changes we collected beforemay not be necessarily

related to a library migration, but it is non-trivial to define and

identify real library migrations from dependency changes. First,

we need to determine whether a migration is feasible between

two arbitrary library pairs (i.e., for 𝑙1 and 𝑙2, whether ⟨𝑙1, 𝑙2⟩ is

a migration rule). Next, we need to identify commits related to

a library migration. To deal with these challenges, we define a

commit as amigration commit when its commit message clearly

indicates a migration (e.g. Replace org.json with jackson [26]), and

define ⟨𝑙1, 𝑙2⟩ as a migration rule if and only if we can find a

migration commit that conducted the migration from 𝑙1 to 𝑙2.

We acquire migration commits and migration rules from the

dependency changes using a state-of-art mining algorithm [36]

and manually validate the returned results. For each source library

query, the algorithm mines possible target libraries, rank each tar-

get library by a confidence value, and returns possible migration

Table 2: Statistics of the Collected Dataset

Data Size/Statistics

Projects (P) 19,652

Stars median = 32, stddev = 1407.93

Commits median = 142, stddev = 5614.70

Active Months median = 27, stddev = 26.97

pom.xml Files median = 2, stddev = 75.72

Libraries (L) 4,022

Versions median = 26, stddev = 104.20

Included Repositories median = 25, stddev = 310.94

Dependency Changes (D) 2,629,992 (302,774 commits)

Adoptions (D+) 1,771,664 (208,691 commits)

Removals (D−) 290,150 (56,377 commits)

Version Changes (D𝑣) 568,178 (97,447 commits)

Migration Rules (R) 1,194 (393 renames)

Migration Commits (M) 3,163 (1,459 renames)

commits from the source library to the target library based on the

collected dependency changes. However, it generates a tremendous

amount of output if we query using all the 4,022 libraries. To reduce

human inspection effort, we use a combination of 1) source libraries

provided in [69], 2) 500 most popular libraries by number of adop-

tions in our repository dataset, as the query to the algorithm (670

queries in total). For the output of each query, we focus on inspect-

ing the returned commits for target libraries that have non-zero

confidence value, rank top-20 among all returned target libraries,

and exist in the aforementioned 4,022 libraries. After validation,

we obtain 1,194 migration rules (390 source libraries, 562 target li-

braries) and 3,163 migration commits. We obtain the largest dataset

compared with previous work (Table 1), but the size of migration

commits by this definition is doomed to be small because most

commits do not have informative commit messages [18]. Thus, this

set of migrations can only be viewed as a subset of real world mi-

grations and inadequate for answering migration popularity (RQ1),

but they are guaranteed to be correct and invaluable for unveiling

migration behavior (RQ2) and reasons for migration (RQ3).

Some migrations happen because of a library rename, which

often accompanies important library changes (e.g., major version

update, license change, organization switch, etc) and falls near the

boundary of library update and library migration. We detect these

rules by finding all rules whose artifact IDs contain overlapping

terms (excluding terms like api, core, all, etc) and manually vali-

dating the results, resulting in 393 rename rules. Teyton et al. [71]

exclude rename rules by manually mapping groupId:artifactId to

"library names." However, library renames are 1) very common at

least in Java/Maven, 2) developers also state them as migrations in

commit messages, and 3) their APIs are often significantly reworked.

Thus, we choose to retain rename rules in subsequent analysis as

a special type of migration rule, and distinguish them from other

rules where their property significantly differs.

In the remainder of this paper, we denote P as the set of repos-

itories (i.e., projects), L as the set of libraries, D as the set of de-

pendency changes (D+,D−,D𝑣 for adoption, removal and version

changes, respectively), R as the set of migration rules, and M as

the set of migration commits. The statistics of collected data are

summarized in Table 2.

481

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

1-11
11-26

26-48
48-83

83-139
139-234

234-406
406-790

791-2123

2123-225489

Number of Commits

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f P
ro

je
ct

s removal
version change

1-2 2-4 4-5 5-7 7-10
10-13

13-19
19-29

29-55
55-4262

Number of Dependencies

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f P
ro

je
ct

s removal
version change

Figure 2: Distribution of 𝑃𝑟 by number of commits / depen-

dencies, with that of 𝑃𝑣 = {𝑝 |𝑝 ∈ P∧𝐷𝑣
𝑝 ≠ ∅} for comparison.

4 RQ1: HOW COMMON ARE LIBRARY
MIGRATIONS?

Since library migration is the process of removing a library and in-

troducing another library, a library removal and a library adoption

are necessary for a library migration. To the best of our knowl-

edge, library removals during software evolution have never been

studied before. Intuitively, if many projects remove a library, it is

probably followed by migrations, and it is unknown exactly how

many removals are related to migrations and how migrations are

distributed in our project corpus. Thus, we ask two sub-RQs:

RQ1.1: How frequently do projects remove a library?

RQ1.2: How frequently do projects migrate a library?

4.1 RQ1.1: Removal Frequency Analysis

4.1.1 Methodology. We consider all types of dependency changes

during analysis for comparison purposes. For project 𝑝 ∈ P, let 𝐶𝑝

be the set of commits for 𝑝 , 𝐷𝑝 be the set of dependency changes

happened in 𝑝 (i.e.,𝐷𝑝 =
⋃

𝑐∈𝐶𝑝
𝐷𝑐).We first consider projects 𝑃𝑟 ⊂

P with at least one removal, i.e., 𝑃𝑟 = {𝑝 | 𝑝 ∈ P ∧ 𝐷−
𝑝 ≠ ∅}, and

analyze its distribution within P. Then, for 𝑝 ∈ 𝑃𝑟 , we compute and

compare the distributions for 1) the number of changes in project 𝑝

for all change types (i.e.,
∑
𝑐∈𝐶𝑝

|𝐷 | for 𝐷 ∈ {𝐷𝑐 , 𝐷
+
𝑐 , 𝐷

−
𝑐 , 𝐷

𝑣
𝑐 }), and

2) the average number of commits between changes for all change

types (i.e., |𝐶𝑝 |/|{𝑐 | 𝑐 ∈ 𝐶𝑝 ∧ 𝐷 ≠ ∅}| for 𝐷 ∈ {𝐷𝑐 , 𝐷
+
𝑐 , 𝐷

−
𝑐 , 𝐷

𝑣
𝑐 }).

We use the latter to estimate the frequency (or interval) of each

change type along the project development history.

4.1.2 Results. For all 19,652 projects (P), 1398 (7.11%) projects

do not have any dependency changes because their pom.xml files

have no or empty <dependencies> sections. Among the remaining

18,254 projects, 8,657 (47.43%) have at least one version change and

8,045 (44.07%) have at least one removal. The two major reasons

for not having any removals or version changes are that, these

projects do not have sufficient development histories or only have

a few number of dependencies. By dividing the 18,254 projects

into 10 equally sized chunks separated by number of commits, we

show on the left side of Figure 2 that migrations are more likely to

happen in projects with higher number of commits, and the trend

is very similar to that of version changes. A Spearman correlation

test between number of removals and number of commits for all

projects yields a coefficient 𝜌 of 0.532 (𝑝 < 0.001), which indicates

moderate to strong correlation. A similar trend can be observed

for number of dependencies on the right side of Figure 2, but the

correlation is weaker (𝜌 = 0.158, 𝑝 < 0.001).

100 101 102 103 104 105

Number of Changes

all
adoption
removal
version

all
adoption
removal
version

Ch
an

ge
 T

yp
e

54
35

6
6

100 101 102 103 104 105
Number of Commits per Change

32
48

139
167

Figure 3: Distribution of the number of changes (below) and

the average number of commits between changes (above).

For the 8,045 projects with at least one removal (𝑃𝑟), we plot the

distribution of the number of changes and the average number of

commits between changes for all change types in Figure 3. Among

𝑃𝑟 , a median project has 35 adoptions, 6 removals, 6 version changes,

one adoption per 48 commits, one removal per 139 commits, and one

version change per 167 commits. The variations are also high across

different projects, with version changes having higher variance

than removals. We conclude that apart from library updates and

adoptions, library removals are also very common for these projects.

Summary for RQ1.1:

Among projects with dependencies, 44.07% have at least one

library removal. For those projects, a median project has one

removal per 139 commits (for comparison, one version change

per 167 commits). Removals are more likely to happen for

projects with higher number of commits and dependencies.

4.2 RQ1.2: Migration Frequency Analysis

4.2.1 Methodology. We begin with M and R mentioned in Sec-

tion 3.3, which contains 716 libraries (denote as 𝐿𝑚 ⊂ L). By

limiting our analysis on projects that have once adopted any of

these libraries, we obtain 17,426 projects and denote as 𝑃𝑚 = {𝑝 |

𝑝 ∈ P ∧ ∃𝑙, 𝑙 ∈ 𝐿𝑚 ∧ 𝑙 ∈ 𝐷+
𝑝 }.

The computation of frequency for library migrations is difficult

because we cannot guarantee the completeness of minedmigrations

for any non-trivial mining approach [36, 69]. As mentioned in Sec-

tion 3.3,M and R are subsets of real world migration commits and

migration rules, which can only be used to estimate lower-bound

frequencies. We refer to such cases as confirmed migrations in

this section and denote 𝑃𝑐𝑚 ⊂ P as the set of projects with at

least one confirmed migration. As an upper-bound estimation, we

propose it is likely that 𝑝 has also conducted the same migration

if ⟨𝑙1, 𝑙2⟩ is a migration rule and 𝑙1 is removed and 𝑙2 is added in

a pom.xml file of project 𝑝 . More formally, let 𝐷𝑝,𝑓 be the set of

dependency changes happened in pom.xml file 𝑓 of project 𝑝 , we

hypothesize that if ⟨𝑙1, 𝑙2⟩ ∈ R ∧ 𝑙1 ∈ 𝐷−
𝑝,𝑓

∧ 𝑙2 ∈ 𝐷+
𝑝,𝑓

, a library

migration may have happened in 𝑓 of 𝑝 . Similar to 𝑃𝑐𝑚 , we refer

to such cases as possible migrations and denote 𝑃𝑝𝑚 ⊂ P as the

set of projects with at least one possible migration.

Similar to RQ1, we first analyze the distribution of 𝑃𝑐𝑚 and 𝑃𝑝𝑚
within 𝑃𝑚 and its relationship with number of commits and num-

ber of dependencies. Then, we analyze the distribution of library

migrations within 𝑃𝑐𝑚 and 𝑃𝑝𝑚 . For each project 𝑝 , we count the

number of migrations by the number of migration rules to avoid

482

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

1-12
12-26

26-50
50-85

85-143
143-242

242-423
423-833

833-2191

2191-225489

Number of Commits

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f P
ro

je
ct

s removal
possible migration
confirmed migration

1-2 2-4 4-6 6-8 8-10
10-14

14-19
19-30

30-57
57-4262

Number of Dependencies

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 o

f P
ro

je
ct

s removal
possible migration
confirmed migration

Figure 4: Distribution of 𝑃𝑐𝑚 and 𝑃𝑝𝑚 by number of commits

and dependencies. We also show the results of 𝑃 ′𝑟 = {𝑝 |𝑝 ∈

𝑃𝑚 ∧ 𝐷−
𝑝 ≠ ∅} for comparison.

duplication when a project simultaneously performs the same mi-

gration in many pom.xml files, or in different branches in which

some may not be merged. More formally, we define

𝑀𝑖𝑔𝐶𝑛𝑡 (𝑝) = |{⟨𝑙1, 𝑙2⟩ | ⟨𝑙1, 𝑙2⟩ ∈ R ∧ 𝑙1 ∈ 𝐷−
𝑝,𝑓

∧ 𝑙2 ∈ 𝐷+
𝑝,𝑓

}| (1)

Finally, for each migration commit 𝑚 ∈ M, we use its commit

timestamp to plot a longitudinal trend of library migrations.

4.2.2 Results. Among the 17,426 projects (𝑃𝑚), 7,950 (45.62%) have

at least one removal of libraries in 𝐿𝑚 , 5,004 (28.72%) projects have

at least one possible migration (𝑃𝑝𝑚), and 1,564 (8.98%) projects

have at least one confirmed migration (𝑃𝑐𝑚). As a rough estimation,

up to 62.94% (5,004 / 7,950) of the projects have removals that lead to

a library migration, for 31.25% (1,564 / 5,004) of which we can con-

firm in commit messages. Although library migrations may not be

very common in 𝑃𝑚 which contains projects with few commits or

few dependencies, we show that library migrations are much more

common for projects with many commits and dependencies (Fig-

ure 4) (𝜌 = 0.456, 𝑝 < 0.001 for commits, and 𝜌 = 0.075, 𝑝 < 0.001

for dependencies using Spearman correlation test). Among the 3,796

projects with more than 10 dependencies and 143 commits (both

are median values in 𝑃𝑚), 2,161 (56.93%) / 764 (20.13%) projects have

at least one possible / confirmed migration. Furthermore, we plot

the distribution of projects by number of migrations happened in

𝑃𝑝𝑚 and 𝑃𝑐𝑚 (Figure 5). As expected, their distributions resemble

the shape of a long-tail distribution, where most projects have one

or a few migrations and some projects have many more. A median

project in 𝑃𝑝𝑚 has undergone 4 possible migrations (mean = 9.33,

stddev = 17.30, max = 337) and a median project in 𝑃𝑐𝑚 has un-

dergone 2 confirmed migrations (mean = 3.35, stddev = 4.54, max

= 46). Although there are extreme cases, the majority of projects

(61.59%∼84.78%) have no more than five migrations. Finally, Fig-

ure 6 shows the number of migration commits in each year, and

we can observe a clear increasing trend (note that we only have

partial data for 2020). This indicates that library migrations are be-

coming increasingly prevalent in the Java/Maven ecosystem since

the publication of Teyton et al. [71].

Summary for RQ1.2:

In the studied project corpus, 8.98% to 28.72% have undergone

at least one library migration. For those projects, most have

no more than five migrations. The probability of undergoing

a library migration becomes significantly higher for projects

with larger number of commits and dependencies.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Number of Possible Migrations

0

500

1000

Nu
m

be
r o

f P
ro

je
ct

s 1134

715

435370
218180159112116 80 87 77 48 76 53 40 40 33 30 29 34 19 21 27 11 11 10 15 17 10 12 11 9 8 6 9 11 8 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Number of Confirmed Migrations

0

200

400

Nu
m

be
r o

f P
ro

je
ct

s 522

213

93 60 27 33 23 12 10 8 5 3 1 3 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Figure 5: Distribution of projects by number of migrations.

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

0

100

200

300

400

500

Nu
m

be
r o

f M
ig

ra
tio

n
Co

m
m

its

10
41 30 47

87

157

237
269

310 291
352

409
442

352

64

Figure 6: Number of migration commits in each year.

5 RQ2: HOW DO MIGRATIONS HAPPEN
BETWEEN LIBRARIES?

The results of RQ1 have demonstrated that library migrations have

happened in a significant number of software projects. However,

it is still unclear how exactly library migrations are conducted, in

particular, what kind of migrations are performed, among what

kind of libraries, and whether or not the migrations share com-

mon behavior. Therefore, we ask RQ2: How do migrations happen

between libraries?

5.1 Methodology

We adopt the concept of migration graph proposed by Teyton

et al. [69, 71] as the basis to facilitate further analysis. We define

the migration graph in our study as a weighted directed graph

⟨𝐿𝑚,R,𝑤⟩, where libraries in 𝐿𝑚 are nodes, migration rules in R

are edges, and𝑤 () is an edge weighting function. For ⟨𝑙1, 𝑙2⟩ ∈ R,

we compute weight 𝑤 (𝑙1, 𝑙2) by counting the number of projects

that have performed a migration from 𝑙1 to 𝑙2 inM.

To demonstrate the extent to which a library is more likely to be

a migration source or a migration target, we define the following

metric 𝑓 𝑙𝑜𝑤 (𝑙) for library 𝑙 ∈ 𝐿𝑚

𝑓 𝑙𝑜𝑤 (𝑙) =
𝑑𝑒𝑔− (𝑙) − 𝑑𝑒𝑔+ (𝑙)

𝑑𝑒𝑔− (𝑙) + 𝑑𝑒𝑔+ (𝑙)
(2)

where𝑑𝑒𝑔− (𝑙) is the weighted indegree for node 𝑙 and𝑑𝑒𝑔+ (𝑙) is the

weighted outdegree for node 𝑙 . Obviously, 𝑓 𝑙𝑜𝑤 (𝑙) ∈ [−1, 1], where

𝑓 𝑙𝑜𝑤 (𝑙) = 1 means 𝑙 is always a target library and 𝑓 𝑙𝑜𝑤 (𝑙) = −1

means 𝑙 is always a source library.

To understand what kind of migrations are performed and to

effectively visualize the graph, we divide migration rules into differ-

ent application domains. First, we use Louvain community detec-

tion [10] on the migration graph to get 116 initial clusters. Then, we

use library descriptions, labels in Maven Central, and information

from search engines to merge clusters, resolve cluster names, and

correct errors. The application domain of eachmigration rule (𝑙1, 𝑙2)

483

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

HTTP Clients (20, 1.89%)
JDBC Pools (19, 1.80%)
Metrics (19, 1.80%)
Build (14, 1.33%)
Command Line (13, 1.23%)
Cache (11, 1.04%)Tag (10, 0.95%)

Webservice (182, 17.23%)

Logging (161, 15.25%)

JSON (154, 14.58%)
Testing (152, 14.39%)

Other (140, 13.26%)

XML (42, 3.98%)

Database (36, 3.41%)
Persistence (31, 2.94%)

Dependency Injection (26, 2.46%)
Bytecode (26, 2.46%)

Figure 7: Distribution of R by application domain.

0 200 400 600 800 1000 1200 1400
Number of Migrations Happened

Logging
JSON

Testing
Webservice

Other
HTTP Clients

XML
Core Utilities

Database
Persistence

I/O
Bytecode

Metrics
Build

Dependency Injection
JDBC Pools

Code Analyzers
Mail

Command Line

1261
1024

720
701

326
135
128

112
110
108
106

68
66
62

51
51

36
36
31

Figure 8: Number of migrations for migration rules in each

application domain (
∑
𝑝∈P 𝑀𝑖𝑔𝐶𝑛𝑡 (𝑝), Equation 1).

is assigned from the domain of 𝑙1 and 𝑙2 when the two libraries

are in the same domain, which is the case for 1,055 rules (88.44%).

For the remaining rules, 𝑙1 and 𝑙2 fall into different domains either

because the boundaries between domains is sometimes unclear or

migrations can happen between different domains (e.g. from a XML

library to a JSON library for serialization). We get 53 application

domains in total, among which 16 domains have more than 10 mi-

gration rules. The domain distribution is shown in Figure 7. Four

domains (web service, logging, JSON, and testing) dominate the

dataset with 648 migration rules (61.42%). If we count the number

of migrations happened (Figure 8), migrations between logging

libraries and JSON libraries happen 1.4-1.7x more than testing and

web service libraries. Finally, we visualize sub-graphs for important

application domains using Sankey diagrams [60], which are often

used to visualize how things flow in complex networks.

5.2 Results

Figure 9 (top) shows the distribution of 𝑓 𝑙𝑜𝑤 (𝑙) for 𝑙 ∈ 𝐿𝑚 . Sur-

prisingly, the distribution is extremely distorted. For 154 libraries

(21.51%), 𝑓 𝑙𝑜𝑤 (𝑙) = −1 and for 326 libraries (45.53%), 𝑓 𝑙𝑜𝑤 (𝑙) = 1.

The remaining libraries generate a uniform distribution in the in-

terval of (−1, 1). The distribution shape does not change even if we

only consider libraries with higher indegree and outdegree values

(Figure 9 second top), although there are slightly more libraries

that fall within the interval of (1,−0.75] ∪ [0.75, 1). The distribu-

tion shape also does not change even if rename rules are excluded

(Figure 9 second bottom and bottom). We can conclude from this

observation that a large number of libraries are either mostly aban-

doned or mostly adopted as migration targets by developers, which

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Migration Flow with deg+(l) + deg-(l) >= 0 for all rules

0

100

200

300

400

Co
un

t

157

5 10 9 12 9 6 5 3 6 2 4 1 18 1 8 1 4 3 22 1 1 4 1 4 3 18 3 5 9 5 7 2 7 6 10 7 5 4

328

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Migration Flow with deg+(l) + deg-(l) >= 5 for all rules

0

25

50

75

100

Co
un

t 52

5 10 9 12 9 6 5 3 4 2 4 1 9 1 8 1 4 3 8 1 1 4 1 4 3 6 3 5 3 5 7 2 7 6 10 7 5 4

71

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Migration Flow with deg+(l) + deg-(l) >= 0 without rename rules

0

100

200

300

Co
un

t

129

0 3 3 8 5 6 6 1 11 3 1 0 15 2 4 2 4 5 28 1 3 2 2 3 3 17 3 5 3 1 2 3 4 1 2 0 0 0

248

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
Migration Flow with deg+(l) + deg-(l) >= 5 without rename rules

0

10

20

30

40

Co
un

t

29

0 3 3
8 5 6 6

1 3 3 1 0
6 2 4 2 4 5 9

1 3 2 2 3 3 1 3 5
0 1 2 3 4 1 2 0 0 0

29

Figure 9: Distribution of 𝑓 𝑙𝑜𝑤 (𝑙) under different conditions.

indicates that some libraries are more competitive than others and

should be recommended to use instead of the other libraries.

As illustrating examples, we visualize the sub-graphs of three

most popular application domains (logging, testing, and JSON)

in Figure 10. We exclude the sub-graph for web service due to

space constraints. To make the graphs readable, we only retain

migration rules ⟨𝑙1, 𝑙2⟩ with 𝑤 (𝑙1, 𝑙2) ≥ 10 for testing and JSON,

and 𝑤 (𝑙1, 𝑙2) ≥ 15 for logging. The unidirectional trend is clearly

visible using Sankey diagrams. In the case of logging libraries,

commons-logging [73] and log4j [72] are two mostly abandoned li-

braries, while libraries under group ID org.apache.logging.log4j

(i.e., log4j 2 [74]) are mostly adopted. Libraries related to slf4j [59]

and logback [58] are somewhere in between. The reason for such

phenomenon may be that the Java community has two major log-

ging practice changes [37]: one is from ad-hoc logging libraries

(e.g., log4j) to logging abstraction libraries (e.g., slf4j); another is

from logging abstraction libraries to logging unification libraries

(e.g., log4j 2). Such multiple paradigm shifts can also be observed

in JSON libraries (e.g., gson [33] is first adopted but then switched

to jackson [28]), but not obvious in testing libraries. We can also

see that rename rules constitute a large number of migrations for

testing and JSON (many non-rename rules are omitted in Figure 10

because they happen in less than 10 projects). In all cases, hardly

can we see two libraries with major bi-directional flows, except the

case of junit:junit [75] and org.testng:testng [8], which may be

the results of early competition when both libraries are immature.

Summary for RQ2:

Library migrations from four domains (logging, testing, JSON,

and web service) among 53 dominate the dataset, presenting

a long tail distribution. Also, library migrations are highly

unidirectional in that most libraries are either mostly adopted

or mostly abandoned.

484

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

Figure 10: Themigration sub-graphs for logging, testing, and JSON libraries. Migrations flow from left to right. Each rectangle

is a graph node (i.e, library) and each grey band is a graph edge (i.e., migration rule). For each edge, its band width encodes the

number of repositories where migrations happened for this migration rule.

6 RQ3: WHAT ARE THE FREQUENTLY
MENTIONED REASONS WHEN
DEVELOPERS CONDUCT A LIBRARY
MIGRATION?

RQ1 and RQ2 demonstrate how library migrations happen in Java

software projects, but it is still unclear why library migrations

happen in these projects. Understanding the latter is important

because we can extract retrospective insights for practitioners by

summarizing the rationale behind previous migrations. Therefore,

we ask RQ3: What are the frequently mentioned reasons when

developers conduct a library migration?

6.1 Methodology

To answer RQ3, we choose to study developer-written texts related

to existing migrations. We begin with the commit messages of

the 3,340 migration commits (M, Section 3.3). To extend available

data, we follow GitHub conventions to identify issue references in

commit messages [31], and retrieve pull requests containing the

commits using the GitHub RESTful APIs. We get 2,775 pull requests

and 385 issues after this step. To extract reasons from these related

texts, we follow the general procedure of thematic analysis [11, 21],

which is frequently used to extract recurring patterns from text in

software engineering research (e.g., [14, 62, 68]).

Since a large amount of text in commit messages, issue/PR de-

scriptions and comments are not relevant to migration reasons,

three of the authors first independently read and re-read all text in

the commits, issues and PRs to mark relevant text about migration

reasons. After the marks are merged and verified through discus-

sion, we get 351 (10.51%) commits, 223 (8.04%) pull requests and

112 (33.53%) issues that include some text stating the reasons for

this migration. The ratios are low either because developers just

document what they have done instead of the rationale behind

their work or because some issues and PRs are discussing other

topics, but we still acquire the largest amount of data to answer

this question compared with existing works [37, 71] (Table 1).

Next, one author reads through all materials and generates 23

initial codes for migration reasons and a coding book that defines

these codes. Then, he and another author independently use the

coding book to code all materials, in which each commit/issue/PR

can be assigned multiple codes. To deal with materials with more

than one code, we use MASI distance [57] as the distance measure

and Krippendorff’s alpha [40] to measure inter-rater agreement.

The first round of coding results in a Krippendorff’s alpha of 0.731,

which is lower than the recommended threshold of 0.8 [41]. To

reduce disagreement, we identify ambiguous codes and discuss

solutions until a consensus is reached. We decide to merge some of

the ambiguous codes (e.g., łease of usež and łflexibilityž are merged

into łusabilityž) to generate final themes, and resolve the remaining

conflicts after the merging. Finally, the 23 codes are merged into

14 sub-themes organized into three themes (source library, target

library, and project specific) and an additional łotherž theme. The

Krippendorff’s alpha of initial coding results after mapping to the

14 sub-themes is 0.803. The main reason for most disagreements is

that some text do not provide sufficient information for distinguish-

ing between different sub-themes. During the conflict resolution

process, the two aforementioned authors first discuss about the

relevant text content to see if anyone has misunderstandings or

labeling mistakes. If the text contains insufficient information or

ambiguities, they may search over the Web, inspect the project de-

velopment history, and infer the underlying reasons based on their

prior experience. One author has 4 years of Java development ex-

perience and arbitrates most of the cases. Cases where the conflicts

cannot be resolved will be simply labeled as łother.ž

6.2 Results

We summarize 14 reasons for migration in Table 3 with three

themes: 1) reasons originated from the source library, 2) reasons

motivated by the target library, and 3) project specific reasons. To

avoid duplication (i.e., multiple issues/PRs mentioning the same

migration), we estimate the frequency of each reason by the number

of projects that have a commit/issue/PR that mentioned this reason

(420 projects in total). We also show the proportion of rename rules

among all rules and top-4 application domains by the aforemen-

tioned frequency for each reason. Among the 14 reasons, 7 reasons

485

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Table 3: Reasons for Library Migration. Reasons marked with † are not mentioned in existing work on library migrations. We

also extend and re-organize reasons mentioned in existing work (marked with §).

Reason Projects Rename Rules Top-4 Application Domains

Source Library 135 (32.14%) 68/135 (50.37%) Logging (23) , HTTP Clients (19) , Testing (16) , JSON (15)

Not Maintained/Outdated§ 77 (18.33%) 25/54 (46.30%) Testing (13) , Logging (10) , JSON (8) , HTTP Clients (8)

Bug/Other Issue§ 41 (9.76%) 35/71 (49.30%) Logging (7) , XML (5) , Database (3) , HTTP Clients (3)

Security Vulnerability† 26 (6.19%) 27/40 (67.50%) HTTP Clients (9) , Logging (6) , JSON (5) , XML (5)

Target Library 166 (39.52%) 77/247 (31.17%) Logging (55) , Testing (33) , JSON (14) , Web Service (11)

Usability§ 76 (18.10%) 20/95 (21.05%) Logging (35) , Testing (13) , Database (4) , JSON (3)

Feature 57 (13.57%) 53/125 (42.40%) Testing (13) , Logging (9) , JSON (8) , Web Service (5)

Performance 28 (6.67%) 7/32 (21.88%) Logging (5) , Web Service (3) , Database (3) , HTTP Clients (2)

Size/Complexity† 10 (2.38%) 0/10 (0.00%) Logging (2) , JSON (1) , Database (1) , Bytecode (1)

Popularity† 9 (2.14%) 11/17 (64.71%) Testing (3) , Logging (2) , HTTP Clients (1) , I/O (1)

Stability/Maturity† 8 (1.90%) 3/8 (37.50%) Logging (2) , Testing (2) , JDBC Pools (1) , Persistence (1)

Activity† 6 (1.43%) 0/5 (0.00%) Testing (2) , Reflection (2) , Classpath (2) , Code Analyzer (1)

Project Specific 188 (44.76%) 77/247 (36.82%) Logging (42) , JSON (24) , Testing (24) , Web Service (22)

Integration§ 125 (29.76%) 90/207 (43.48%) Logging (24) , Web Service (17) , Testing (16) , JSON (12)

Simplification§ 53 (12.62%) 21/81 (25.93%) Logging (21) , Testing (9) , JSON (5) , Web Service (5)

License† 22 (5.24%) 4/20 (20.00%) Code Analyzers (6) , JSON (6) , PDF (3) , Math (2)

Organization Influence† 5 (1.19%) 9/12 (75.00%) Command Line (2) , JSON (1) , Build (1) , XML (1)

Other 21 (5.00%) 24/42 (57.14%) JSON (6) , Logging (6) , Web Service (4) , Database (2)

(marked with †) are not discussed in existing work (Table 1), and

5 reasons (marked with §) originate from existing work but are

further extended and re-organized based on our findings. In the

remainder of this section, we will introduce each reason in detail.

6.2.1 Source Library. 135 projects (32.15%) conduct library migra-

tions because of problems in the source library, with three dominat-

ing factors: the source library is not maintained/outdated, suffers

from security vulnerabilities, or contains bugs/other issues.

Not Maintained/Outdated. The migration happens because

the source library is old and/or lacks maintenance, and the project

decides to use the library that is currently recommended and sup-

ported by the community. It is the most common reason in source

libraries for both rename rules and other rules. Examples: 1) Re-

place end of life apache http client 3.1 with 4.1.9 2) FEST hasn’t been

updated in over 1 year. AssertJ looks like the successor.10 Teyton

et al. [69] mention łoutdatedž as a reason for migration, but we

further discover that the major concern is whether the library is

still maintained, and the recognition of non-maintenance (e.g., an-

nouncement of end-of-life) often triggers migrations.

Bug/Other Issues. The migration happens because of bugs,

warnings, crashes, inconsistencies, unwanted features or other pe-

culiar issues. For example, Empty string is not working, when we

pass ""...This seems to be a bug in jcommander.11

Security Vulnerability. The migration happens because of se-

curity vulnerabilities in the source library, and also mostly because

9Commit fa6f20b in https://github.com/basho/riak-java-client
10https://github.com/dropwizard/dropwizard/issues/493
11https://github.com/ballerina-platform/ballerina-lang/issues/229

the source library does not provide any security fixes. This happens

mostly for rename rules (67.50%), and most notably for some of the

migrations from log4j to log4j 2, slf4j or logback, e.g. Fix for log4j

vulnerability CVE-2019-17571.12 It seems that security issue is the

last straw that pushes these projects to finally abandon an old and

unmaintained library.

6.2.2 Target Library. 166 projects (39.52%) conduct library migra-

tions because of advantages in the target library. Inspired by Larios

Vargas et al. [78], we divide them into the following 7 dimensions.

Usability. The most frequently mentioned reason in target li-

brary is that the target library is easy to use, has nice APIs, results

in cleaner code, cleaner configuration, or is flexible for end users to

switch implementations on need, e.g. allow users to use their pre-

ferred logging framework (such as logback) ,13 and Fest is awesome.

The tests read better, and fest’s fluent matchers are way easier to find

(via auto-complete) than the static imported hamcrest matchers.14

Some projects also mention that choosing an easy-to-use library

is important for maintainability in the future. Kabinna et al. [37]

mention łflexibilityž and Teyton et al. [69] mention łconveniencež

as reasons for migration, but the former reason is specific to log-

ging libraries (because many projects want to allow its downstream

projects to switch underlying logger implementation on demand),

and the latter term does not cover all the cases we find. Therefore,

we decide to merge them into a broader sub-theme of łusability.ž

12https://github.com/OpenLiberty/ci.maven/pull/717
13https://github.com/apache/accumulo/pull/1163
14Commit 05263e7 in https://github.com/glowroot/glowroot

486

https://github.com/basho/riak-java-client
https://github.com/dropwizard/dropwizard/issues/493
https://github.com/ballerina-platform/ballerina-lang/issues/229
https://github.com/OpenLiberty/ci.maven/pull/717
https://github.com/apache/accumulo/pull/1163
https://github.com/glowroot/glowroot

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

Feature. A large number of migrations also happen because the

target library has specific features that the source library cannot

provide. For example,Use gson to preserve the order of all fields.15 The

mentioned features are highly diverse across different application

domains and project contexts.

Performance. Performance is also frequently mentioned as a

reason for migration. In most cases, the migration happens be-

cause a project needs to meet special functional requirements (e.g.

latency, throughput, compile time, etc) that the existing library can-

not satisfy. For example, log4j has been identified as a performance

bottleneck for high qps use cases.16

Size/Complexity. Some projects care about the binary size or

simplicity of the library, mostly because they want their own binary

to be as small as possible, e.g. Swapped H2 database to Hypersonic

SQL to make stubby4j JAR smaller.17

Popularity. Surprisingly, popularity is not a frequently men-

tioned reason, and most of the cases are because of library renames

(64.71%). It may be because it is too trivial to be mentioned or dis-

cussed, or because popularity alone does not provide immediate

benefits and thus is not the decisive factor of a migration.

Stability/Maturity. A few projects mention that the target li-

brary is stable or more robust. It may not be the decisive factor,

but the factor that finally drives a migration, e.g., JUnit 5 will be

available soon as a stable release. It is available a alpha/beta now. As

soon as it is available, all the unit tests may use this version.18

Activity. A few projects mentioned the community is more

active in the target library, but it is only mentioned along with

other reasons (e.g. source library is not maintained) and never

mentioned as the single decisive factor.

6.2.3 Project Specific. 188 projects (44.76%) mentioned that they

conduct library migrations due to project specific reasons.

Integration. The most common reason is the need to integrate

the library with something else in the project to achieve specific

goals, avoid issues, or ensure compatibility. We identify three major

cases: 1) to integrate with other dependencies to achieve a spe-

cific goal, e.g. utilize existing integration support, as stated in This

change replaces the internal usage of Dropwizard in favor of Microm-

eter...This allows to take full advantage of the Spring Boot Micrometer

integration.19 2) to avoid conflicts / incompatibility with other de-

pendencies or other project modules, e.g., Removes the PowerMock

dependency which was having some bad interactions with Mockito.20

3) to be compatible with the required runtime environment, e.g.,

migrate from lombok to kotlin...to a fix a bug with java 11.21 Teyton

et al. [71] mention łconfigurationž and łenvironmentž, which we

merge and extend into this sub-theme.

Simplification. Some migrations happen to simplify library

usage within project, achieve consistent style, or cleanup unnec-

essary dependencies, as a preventive measure to control project

complexity, remove technical debt, and possibly reduce mainte-

nance effort in the future. For example, 1) Unify all JSON usage to

15https://github.com/apache/incubator-pinot/pull/2473
16https://github.com/apache/incubator-pinot/pull/4139
17Commit ce45e04 in https://github.com/azagniotov/stubby4j
18https://github.com/sarl/sarl/issues/875
19Commit 905e384 in https://github.com/eclipse/hono/
20Commit 2aed070 in https://github.com/GoogleCloudPlatform/java-docs-samples/
21https://github.com/spotify/ffwd/pull/140

fasterxml.jackson package. Remove the usage of json package from

org.json, org.codehaus.jackson, com.google.code.gson, com.alibaba.

Add JsonUtils class to reuse ObjectMapper and provide util meth-

ods.22 2) Make Logging Frameworks Coherent Across Libraries and

IOT Codebase.23 3) Lots of cleanup. Removed Junit from a couple of

modules (everything is TestNG now). 24 This sub-theme covers łre-

duce the number of dependencies ž and łreduce future maintenancež

mentioned in Kabinna et al. [37], and we further discover a frequent

pattern in which many migrations happen because developers want

to avoid using different libraries for the same purpose.

License. For some projects and libraries, license compatibility

stands out as themajor reason formigration. For example, 6 projects,

including Spring Framework and Apache Hive, refrained from using

org.json:json because of its unusual license term The Software

shall be used for Good, not Evil.25 Other projects also migrate from

various GPL or LGPL licensed libraries to other alternatives with

more permissive licenses, such as Apache 2.0 and MIT.

Organization Influence. Some projects remove a library be-

cause it is not approved by the belonging organization, or use a

library as requested by the organization, e.g. Removes JLine2 as a

dependency since it’s not approved by LocationTech.26

Summary for RQ3:

Projects conduct library migrations for 14 diverse reasons

from the source library, the target library, and the projects

themselves. The most frequent reasons are: lack of mainte-

nance in the source, feature / usability in the target, integra-

tion with project context, and simplification of dependencies.

7 DISCUSSION

7.1 Takeaways for Practitioners

7.1.1 Best Practices. Since our findings reveal that library migra-

tions are highly unidirectional, it makes sense to formulate best

practices on library migrations, and such best practices should be

more publicly visible. For example, package hosting platforms can

compute and demonstrate the current retention rate for a library, as

an additional metric to help developers decide whether to adopt or

migrate the library. Tools that help developers choose among a set

of candidate libraries (e.g. AlternatveTo [53] and SimilarTech [12])

can make recommendations based on historical adoption, removal

and migration trends. Tools can also be developed to monitor the

łfreshnessž of dependencies and prompt migration recommenda-

tions to developers based on the latest trends.

7.1.2 Unmaintained Libraries. Our findings also reveal that a large

part of library migrations happen because of unmaintained libraries

(Table 3), and the situation significantly worsens if an unmaintained

library has unfixed issues and security vulnerabilities. However,

open-source libraries are prone to sustainability failures [14, 77],

and unmaintained libraries may have vulnerabilities which may be

even unknown to public but already discovered bymalicious parties.

22https://github.com/apache/incubator-pinot/pull/3677
23Commit dd5ae79 in https://github.com/hortonworks/streamline/
24Commit dfe5b79 in https://github.com/dhanji/sitebricks
25https://www.json.org/license.html
26Commit 833638f in https://github.com/locationtech/geogig/

487

https://github.com/apache/incubator-pinot/pull/2473
https://github.com/apache/incubator-pinot/pull/4139
https://github.com/azagniotov/stubby4j
https://github.com/sarl/sarl/issues/875
https://github.com/eclipse/hono/
https://github.com/GoogleCloudPlatform/java-docs-samples/
https://github.com/spotify/ffwd/pull/140
https://github.com/apache/incubator-pinot/pull/3677
https://github.com/hortonworks/streamline/
https://github.com/dhanji/sitebricks
https://www.json.org/license.html
https://github.com/locationtech/geogig/

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

Given such risks, we suggest that software projects should refrain

from using an unmaintained library at all, and migrate to other

alternatives as soon as possible. However, determining whether

a library is unmaintained may not be easy without community

effort. For example, we cannot easily tell whether a library is un-

maintained from its last release time, because a mature library may

not need to release frequently even if someone is still maintaining

it. Therefore, we also suggest package hosting platforms build a

łdeprecationž mechanism for their hosted libraries (similar to that

of API). Library maintainers can use this mechanism to announce

their decision to no longer maintain a library, and package manager

can automatically issue warnings to developers when they attempt

to build their project with a łdeprecatedž library. A similar depre-

cation mechanism is available in npm for JavaScript libraries [16],

but not in Maven Central for Java libraries.

7.1.3 Library Selection and Development. We discover that among

the library selection factors reported by Larios Vargas et al. [78],

only a few of them serve as the major driving pressure for library

migration. Most migrations happen because of usability, feature,

or performance, and different application domains have differ-

ent patterns (Table 3). Given that library migrations are generally

costly [4, 13], it indicates that the gain in feature, performance or us-

ability outweighs the costs, or the migration may be mission-critical

and must be performed. Therefore, we recommend developers to

pay extra attention to these aspects and evaluate them with project

requirements when selecting libraries, to avoid a costly migration

in the future. Library developers can also consider prioritizing their

efforts on these aspects to make their library more competitive.

7.1.4 Project Integration and Maintenance. A large number of li-

brary migrations happen for integration with project context, sim-

plification of dependencies, or license incompatibilities. To prevent

such migrations, we recommend project maintainers to check de-

pendency conflicts or license incompatibilities before adopting a

library, and avoid unnecessary dependencies (e.g., using different

libraries for the same task). Maintainers can use automated tools

to facilitate these checks (e.g., maven-shade-plugin, mvn dependency

commands, and open-source license checkers). However, existing

tools may be unable to check complex interaction issues or recom-

mend best co-usage practices. For example, one developer states

in an issue that Spark really wants you to use log4j,27 but it is not

obvious from Spark documentation. Therefore, we also suggest

library developers, especially framework developers, should ex-

plicitly document what libraries are recommended to use together

with their library and what libraries are not recommended. Re-

searchers may also consider developing automated tools to allevi-

ate this issue, e.g., by applying existing library recommendation

approaches [51, 61, 76] to discover co-usage patterns, or design new

approaches to detect common integration pitfalls.

7.2 Threats to Validity

7.2.1 Internal Validity. Extracting dependencies from pom.xmls is

the standard practice by many recent studies (e.g., [19, 27, 43, 80]),

27https://github.com/openzipkin-attic/zipkin-sparkstreaming/issues/30

but it comes with a number of limitations. First, the declared depen-

dencies may not be actually used (i.e., bloated) and used dependen-

cies may be transitively included and not explicitly declared [66].

Second, in multi-module projects, dependencies may be moved

between different modules, which may cause over-estimations on

removals and adoptions. Our approach for computing dependency

changes may also generate errors in some corner cases (e.g., a

merge commit contains conflict resolution or is squashed with its

parents [67]). All these cases will induce noises into our collected

dependency changes and affect the results in RQ1, but they are

generally recognized as bad practice and should not be very com-

mon in well maintained projects. Additionally, we use self-admitted

commit messages as the final criteria to ensure that all migrations

we use to answer RQ2 and RQ3 are real migrations. For the collected

library migrations, we do not know how complete or representative

they are for all migrations in the wild. However, projects with good

commit messages about library migration may be of better quality

than those without, so their practices should be more valuable for

reference by other practitioners. The manual identification of mi-

grations, the resolution of application domains, and the thematic

analysis process may all contain labeling errors. To mitigate this

threat, at least two authors double check the results for the first two

steps and conduct independent coding for the thematic analysis.

7.2.2 External Validity. Our findings may not generalize to migra-

tions that happen without being mentioned in commit messages

and migrations in other projects and between other libraries. We

mitigate this threat by collecting a large number of starred GitHub

projects and library migrations for popular libraries. Our findings

may also not generalize to projects that do not use build automation

tools or projects that use other build automation tools (e.g., Gra-

dle [34]), but Maven is the most popular tool [63] and the choice of

automation tools should not significantly affect project properties,

Therefore, we believe our results will be useful for a broad audi-

ence of Java practitioners. Finally, our results may not generalize to

proprietary projects and projects in other programming languages

/ ecosystems (e.g., JavaScript/npm, Python/PyPI, etc). Intuitively,

the results may differ because of difference in application domain,

developer preferences, and stakeholder interest, and we leave the

investigation of ecosystem differences as future work.

8 CONCLUSION AND FUTUREWORK

In this paper, we conduct a descriptive mixed methods study on

how and why library migrations happen in Java software projects.

Our contributions are 1) A framework for quantifying dependency

changes and library migrations based on version control data. 2)

Findings regarding prevalence, trends and rationales of library

migration in Java projects. 3) A largest dataset to-date in the topic

of library migration. As future work, we plan to understand the

decision-making process of library migration, and evaluate the

practicality of existing automated approaches for library migration.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China

Grant 2018YFB1004201 and the National Natural Science Founda-

tion of China Grant 61825201. We would also like to thank the

anonymous reviewers for their constructive feedback.

488

https://github.com/openzipkin-attic/zipkin-sparkstreaming/issues/30

ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou

REFERENCES
[1] Mahmoud Alfadel, Diego Elias Costa, and Emad Shihab. 2021. Empirical Analysis

of Security Vulnerabilities in Python Packages. In 28th IEEE International Confer-
ence on Software Analysis, Evolution and Reengineering, SANER 2021, Honolulu,
HI, USA, March 9-12, 2021. IEEE, 446ś457. https://doi.org/10.1109/SANER50967.
2021.00048

[2] Hussein Alrubaye, Deema Alshoaibi, Eman Abdullah AlOmar, Mohamed Wiem
Mkaouer, and Ali Ouni. 2020. How Does Library Migration Impact Software
Quality and Comprehension? An Empirical Study. In Reuse in Emerging Software
Engineering Practices - 19th International Conference on Software and Systems
Reuse, ICSR 2020, Hammamet, Tunisia, December 2-4, 2020, Proceedings. Springer,
245ś260. https://doi.org/10.1007/978-3-030-64694-3_15

[3] Hussein Alrubaye, Mohamed Wiem Mkaouer, Igor Khokhlov, Leon Reznik, Ali
Ouni, and Jason Mcgoff. 2020. Learning to recommend third-party library mi-
gration opportunities at the API level. Appl. Soft Comput. 90 (2020), 106140.
https://doi.org/10.1016/j.asoc.2020.106140

[4] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. On the use
of information retrieval to automate the detection of third-party Java library
migration at the method level. In Proceedings of the 27th International Conference
on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019.
IEEE / ACM, 347ś357. https://doi.org/10.1109/ICPC.2019.00053

[5] Thiago Tonelli Bartolomei, Krzysztof Czarnecki, and Ralf Lämmel. 2010. Swing to
SWT and back: Patterns for API migration by wrapping. In 26th IEEE International
Conference on Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara,
Romania. IEEE Computer Society, 1ś10. https://doi.org/10.1109/ICSM.2010.
5610429

[6] Thiago Tonelli Bartolomei, Krzysztof Czarnecki, Ralf Lämmel, and Tijs van der
Storm. 2009. Study of an API Migration for Two XML APIs. In Software Language
Engineering, Second International Conference, SLE 2009, Denver, CO, USA, October
5-6, 2009, Revised Selected Papers. Springer, 42ś61. https://doi.org/10.1007/978-3-
642-12107-4_5

[7] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2015. How the Apache community upgrades dependencies:
an evolutionary study. Empir. Softw. Eng. 20, 5 (2015), 1275ś1317. https://doi.
org/10.1007/s10664-014-9325-9

[8] Cédric Beust. 2019. TestNG - Welcome. https://testng.org/
[9] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. Ger-

mán, and Premkumar T. Devanbu. 2009. The promises and perils of mining git.
In Proceedings of the 6th International Working Conference on Mining Software
Repositories, MSR 2009 (Co-located with ICSE), Vancouver, BC, Canada, May 16-17,
2009, Proceedings. IEEE Computer Society, 1ś10. https://doi.org/10.1109/MSR.
2009.5069475

[10] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/p10008

[11] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. (2012).
[12] Chunyang Chen and Zhenchang Xing. 2016. SimilarTech: automatically rec-

ommend analogical libraries across different programming languages. In Pro-
ceedings of the 31st IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2016, Singapore, September 3-7, 2016. ACM, 834ś839.
https://doi.org/10.1145/2970276.2970290

[13] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong. 2021.
Mining Likely Analogical APIs Across Third-Party Libraries via Large-Scale
Unsupervised API Semantics Embedding. IEEE Trans. Software Eng. 47, 3 (2021),
432ś447. https://doi.org/10.1109/TSE.2019.2896123

[14] Jailton Coelho and Marco Tulio Valente. 2017. Why modern open source projects
fail. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017. ACM, 186ś
196. https://doi.org/10.1145/3106237.3106246

[15] Filipe Roseiro Cogo, Gustavo Ansaldi Oliva, and Ahmed E Hassan. 2019. An em-
pirical study of dependency downgrades in the npm ecosystem. IEEE Transactions
on Software Engineering (2019). https://doi.org/10.1109/TSE.2019.2952130

[16] Filipe Roseiro Cogo, Gustavo Ansaldi Oliva, and Ahmed E Hassan. 2021. Depre-
cation of packages and releases in software ecosystems: A case study on npm.
IEEE Transactions on Software Engineering (2021). https://doi.org/10.1109/TSE.
2021.3055123

[17] Bruce Collie, Philip Ginsbach, Jackson Woodruff, Ajitha Rajan, and Michael F. P.
O’Boyle. 2020. M3: Semantic API Migrations. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 90ś102. https://doi.org/10.1145/3324884.3416618

[18] Luis Fernando Cortes-Coy, Mario Linares Vásquez, Jairo Aponte, and Denys
Poshyvanyk. 2014. On Automatically Generating Commit Messages via Summa-
rization of Source Code Changes. In 14th IEEE International Working Conference
on Source Code Analysis and Manipulation, SCAM 2014, Victoria, BC, Canada,
September 28-29, 2014. IEEE Computer Society, 275ś284. https://doi.org/10.1109/
SCAM.2014.14

[19] Joel Cox, Eric Bouwers, Marko C. J. D. van Eekelen, and Joost Visser. 2015. Measur-
ing Dependency Freshness in Software Systems. In 37th IEEE/ACM International
Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24, 2015,
Volume 2. IEEE Computer Society, 109ś118. https://doi.org/10.1109/ICSE.2015.140

[20] Russ Cox. 2019. Surviving software dependencies. Commun. ACM 62, 9 (2019),
36ś43. https://doi.org/10.1145/3347446

[21] Daniela S. Cruzes and Tore Dybå. 2011. Recommended Steps for Thematic
Synthesis in Software Engineering. In Proceedings of the 5th International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2011, Banff,
AB, Canada, September 22-23, 2011. IEEE Computer Society, 275ś284. https:
//doi.org/10.1109/ESEM.2011.36

[22] Fernando López de la Mora and Sarah Nadi. 2018. An Empirical Study of
Metric-based Comparisons of Software Libraries. In Proceedings of the 14th In-
ternational Conference on Predictive Models and Data Analytics in Software En-
gineering, PROMISE 2018, Oulu, Finland, October 10, 2018. ACM, 22ś31. https:
//doi.org/10.1145/3273934.3273937

[23] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the Evo-
lution of Technical Lag in the npm Package Dependency Network. In 2018
IEEE International Conference on Software Maintenance and Evolution, ICSME
2018, Madrid, Spain, September 23-29, 2018. IEEE Computer Society, 404ś414.
https://doi.org/10.1109/ICSME.2018.00050

[24] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proceedings
of the 15th International Conference on Mining Software Repositories, MSR 2018,
Gothenburg, Sweden, May 28-29, 2018. ACM, 181ś191. https://doi.org/10.1145/
3196398.3196401

[25] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empir. Softw. Eng. 24, 1 (2019), 381ś416. https://doi.org/10.1007/s10664-017-9589-
y

[26] Vaclav Dedik. 2015. Replace org.json with jackson. https:
//github.com/release-engineering/pom-manipulation-ext/commit/
d7d4a0305e6b681e97e79b0510ca0b7570f2ed00

[27] Jens Dietrich, David J. Pearce, Jacob Stringer, Amjed Tahir, and Kelly Blincoe.
2019. Dependency versioning in the wild. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal,
Canada. IEEE / ACM, 349ś359. https://doi.org/10.1109/MSR.2019.00061

[28] FasterXML, LLC. 2019. FasterXML/jackson: Main Portal page for the Jackson
Project. https://github.com/FasterXML/jackson

[29] Python Software Foundation. 2021. PyPI: the Python package index. https:
//pypi.org/

[30] The Apache Software Foundation. 2021. Apache Maven Project. https://maven.
apache.org/

[31] GitHub, Inc. 2021. Autolinked references and URLs. https://docs.github.com/en/
github/writing-on-github/autolinked-references-and-urls

[32] GitHub, Inc. 2021. GitHub Advisory Database. https://github.com/advisories
[33] Google, Inc. 2019. google/gson: A Java serialization/deserialization library to

convert Java Objects into JSON and back. https://github.com/google/gson
[34] Gradle Inc. 2021. Gradle Build Tool. https://gradle.org/
[35] Hao He, Yulin Xu, Xiao Cheng, Guangtai Liang, and Minghui Zhou. 2021. Migra-

tionAdvisor: Recommending Library Migrations from Large-Scale Open-Source
Data. In 43rd IEEE/ACM International Conference on Software Engineering: Com-
panion Proceedings, ICSE Companion 2021, Madrid, Spain, May 25-28, 2021. IEEE,
9ś12. https://doi.org/10.1109/ICSE-Companion52605.2021.00023

[36] HaoHe, Yulin Xu, YixiaoMa, Yifei Xu, Guangtai Liang, andMinghui Zhou. 2021. A
Multi-Metric Ranking Approach for Library Migration Recommendations. In 28th
IEEE International Conference on Software Analysis, Evolution and Reengineering,
SANER 2021, Honolulu, HI, USA, March 9-12, 2021. IEEE, 72ś83. https://doi.org/
10.1109/SANER50967.2021.00016

[37] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016.
Logging library migrations: A case study for the Apache Software Foundation
projects. In Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016. ACM, 154ś164. https:
//doi.org/10.1145/2901739.2901769

[38] Jeremy Katz. 2020. Libraries.io Open Source Repository and Dependency Metadata.
https://doi.org/10.5281/zenodo.3626071

[39] David Kavaler, Asher Trockman, Bogdan Vasilescu, and Vladimir Filkov. 2019.
Tool choice matters: JavaScript quality assurance tools and usage outcomes in
GitHub projects. In Proceedings of the 41st International Conference on Software
Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM,
476ś487. https://doi.org/10.1109/ICSE.2019.00060

[40] Klaus Krippendorff. 2011. Computing Krippendorff’s alpha-reliability. (2011).
[41] Klaus Krippendorff. 2018. Content analysis: An introduction to its methodology.

Sage publications.
[42] Raula Gaikovina Kula, Daniel M. Germán, Takashi Ishio, and Katsuro Inoue. 2015.

Trusting a library: A study of the latency to adopt the latest Maven release. In 22nd
IEEE International Conference on Software Analysis, Evolution, and Reengineering,
SANER 2015, Montreal, QC, Canada, March 2-6, 2015. IEEE Computer Society,

489

https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1109/SANER50967.2021.00048
https://doi.org/10.1007/978-3-030-64694-3_15
https://doi.org/10.1016/j.asoc.2020.106140
https://doi.org/10.1109/ICPC.2019.00053
https://doi.org/10.1109/ICSM.2010.5610429
https://doi.org/10.1109/ICSM.2010.5610429
https://doi.org/10.1007/978-3-642-12107-4_5
https://doi.org/10.1007/978-3-642-12107-4_5
https://doi.org/10.1007/s10664-014-9325-9
https://doi.org/10.1007/s10664-014-9325-9
https://testng.org/
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1145/2970276.2970290
https://doi.org/10.1109/TSE.2019.2896123
https://doi.org/10.1145/3106237.3106246
https://doi.org/10.1109/TSE.2019.2952130
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1145/3324884.3416618
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/SCAM.2014.14
https://doi.org/10.1109/ICSE.2015.140
https://doi.org/10.1145/3347446
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1109/ESEM.2011.36
https://doi.org/10.1145/3273934.3273937
https://doi.org/10.1145/3273934.3273937
https://doi.org/10.1109/ICSME.2018.00050
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1145/3196398.3196401
https://doi.org/10.1007/s10664-017-9589-y
https://doi.org/10.1007/s10664-017-9589-y
https://github.com/release-engineering/pom-manipulation-ext/commit/d7d4a0305e6b681e97e79b0510ca0b7570f2ed00
https://github.com/release-engineering/pom-manipulation-ext/commit/d7d4a0305e6b681e97e79b0510ca0b7570f2ed00
https://github.com/release-engineering/pom-manipulation-ext/commit/d7d4a0305e6b681e97e79b0510ca0b7570f2ed00
https://doi.org/10.1109/MSR.2019.00061
https://github.com/FasterXML/jackson
https://pypi.org/
https://pypi.org/
https://maven.apache.org/
https://maven.apache.org/
https://docs.github.com/en/github/writing-on-github/autolinked-references-and-urls
https://docs.github.com/en/github/writing-on-github/autolinked-references-and-urls
https://github.com/advisories
https://github.com/google/gson
https://gradle.org/
https://doi.org/10.1109/ICSE-Companion52605.2021.00023
https://doi.org/10.1109/SANER50967.2021.00016
https://doi.org/10.1109/SANER50967.2021.00016
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.1145/2901739.2901769
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.1109/ICSE.2019.00060

A Large-Scale Empirical Study on Java Library Migrations: Prevalence, Trends, and Rationales ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

520ś524. https://doi.org/10.1109/SANER.2015.7081869
[43] Raula Gaikovina Kula, Daniel M. Germán, Ali Ouni, Takashi Ishio, and Katsuro

Inoue. 2018. Do developers update their library dependencies? - An empirical
study on the impact of security advisories on library migration. Empir. Softw.
Eng. 23, 1 (2018), 384ś417. https://doi.org/10.1007/s10664-017-9521-5

[44] Hemank Lamba, Asher Trockman, Daniel Armanios, Christian Kästner, Heather
Miller, and Bogdan Vasilescu. 2020. Heard it through the Gitvine: an empirical
study of tool diffusion across the npm ecosystem. In ESEC/FSE ’20: 28th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 505ś517.
https://doi.org/10.1145/3368089.3409705

[45] Snyk Limited. 2021. Snyk | Developer security | Develop fast. Stay secure. https:
//snyk.io/

[46] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada. IEEE / ACM, 143ś154.
https://doi.org/10.1109/MSR.2019.00031

[47] Yuxing Ma, Audris Mockus, Russell Zaretzki, Bogdan Bichescu, and Randy
Bradley. 2020. A Methodology for Analyzing Uptake of Software Technolo-
gies Among Developers. IEEE Transactions on Software Engineering (2020), 1ś1.
https://doi.org/10.1109/TSE.2020.2993758

[48] Samim Mirhosseini and Chris Parnin. 2017. Can automated pull requests encour-
age software developers to upgrade out-of-date dependencies?. In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03, 2017. IEEE Computer Society,
84ś94. https://doi.org/10.1109/ASE.2017.8115621

[49] Parastoo Mohagheghi and Reidar Conradi. 2007. Quality, Productivity and Eco-
nomic Benefits of Software Reuse: A review of Industrial Studies. Empir. Softw.
Eng. 12, 5 (2007), 471ś516. https://doi.org/10.1007/s10664-007-9040-x

[50] MvnRepository. 2021. Maven Central Repository. https://mvnrepository.com/
repos/central

[51] Phuong T. Nguyen, Juri Di Rocco, Davide Di Ruscio, and Massimiliano Di Penta.
2020. CrossRec: Supporting software developers by recommending third-party
libraries. J. Syst. Softw. 161 (2020). https://doi.org/10.1016/j.jss.2019.110460

[52] npm, Inc. 2021. npm | Build amazing things. https://www.npmjs.com/
[53] Ola Johansson and Markus Olausson. 2021. AlternativeTo: Crowd-Sourced Soft-

ware Recommendation. https://alternativeto.net/
[54] Oracle. 2021. JAR File Specification. https://docs.oracle.com/javase/8/docs/

technotes/guides/jar/jar.html
[55] Amantia Pano, Daniel Graziotin, and Pekka Abrahamsson. 2018. Factors and

actors leading to the adoption of a JavaScript framework. Empir. Softw. Eng. 23, 6
(2018), 3503ś3534. https://doi.org/10.1007/s10664-018-9613-x

[56] Ivan Pashchenko, Henrik Plate, Serena Elisa Ponta, Antonino Sabetta, and Fabio
Massacci. 2018. Vulnerable open source dependencies: counting those that
matter. In Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM 2018, Oulu, Finland, October 11-12,
2018. ACM, 42:1ś42:10. https://doi.org/10.1145/3239235.3268920

[57] Rebecca Passonneau. 2006. Measuring agreement on set-valued items (MASI) for
semantic and pragmatic annotation. (2006).

[58] QOS.ch. 2019. Logback Project. http://logback.qos.ch/
[59] QOS.ch. 2019. SLF4J: Simple Logging Facade for Java. http://www.slf4j.org/
[60] Patrick Riehmann, Manfred Hanfler, and Bernd Froehlich. 2005. Interactive

Sankey Diagrams. In IEEE Symposium on Information Visualization (InfoVis 2005),
23-25 October 2005, Minneapolis, MN, USA. IEEE Computer Society, 233ś240.
https://doi.org/10.1109/INFVIS.2005.1532152

[61] Mohamed Aymen Saied, Ali Ouni, Houari A. Sahraoui, Raula Gaikovina Kula,
Katsuro Inoue, and David Lo. 2018. Improving reusability of software libraries
through usage pattern mining. J. Syst. Softw. 145 (2018), 164ś179. https://doi.
org/10.1016/j.jss.2018.08.032

[62] Danilo Silva, Nikolaos Tsantalis, andMarco Tulio Valente. 2016. Whywe refactor?
confessions of GitHub contributors. In Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016, Seattle,
WA, USA, November 13-18, 2016. ACM, 858ś870. https://doi.org/10.1145/2950290.
2950305

[63] Snyk. 2020. JVM Ecosystem Report 2020. https://snyk.io/wp-content/uploads/
jvm_2020.pdf

[64] WhiteSource Software. 2021. WhiteSource: Open Source Security and License
Management Solution. https://www.whitesourcesoftware.com/

[65] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and
Benoit Baudry. 2019. The emergence of software diversity in Maven Central.
In Proceedings of the 16th International Conference on Mining Software Repos-
itories, MSR 2019, 26-27 May 2019, Montreal, Canada. IEEE / ACM, 333ś343.
https://doi.org/10.1109/MSR.2019.00059

[66] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2021.
A comprehensive study of bloated dependencies in the Maven ecosystem. Empir.
Softw. Eng. 26, 3 (2021), 45. https://doi.org/10.1007/s10664-020-09914-8

[67] StackOverflow Users. 2020. Can I squash a merge commit with one of its prede-
cessors? https://stackoverflow.com/questions/61906251/can-i-squash-a-merge-
commit-with-one-of-its-predecessors

[68] Xin Tan and Minghui Zhou. 2019. How to Communicate when Submitting
Patches: An Empirical Study of the Linux Kernel. Proc. ACM Hum. Comput.
Interact. 3, CSCW (2019), 108:1ś108:26. https://doi.org/10.1145/3359210

[69] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. 2012. Mining Library Mi-
gration Graphs. In 19th Working Conference on Reverse Engineering, WCRE 2012,
Kingston, ON, Canada, October 15-18, 2012. IEEE Computer Society, 289ś298.
https://doi.org/10.1109/WCRE.2012.38

[70] Cédric Teyton, Jean-Rémy Falleri, and Xavier Blanc. 2013. Automatic discovery
of function mappings between similar libraries. In 20th Working Conference on
Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013. IEEE
Computer Society, 192ś201. https://doi.org/10.1109/WCRE.2013.6671294

[71] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A study
of library migrations in Java. J. Softw. Evol. Process. 26, 11 (2014), 1030ś1052.
https://doi.org/10.1002/smr.1660

[72] The Apache Software Foundation. 2012. Apache Log4j 1.2. https://logging.
apache.org/log4j/1.2/

[73] The Apache Software Foundation. 2014. Apache Commons Logging - Overview.
https://commons.apache.org/proper/commons-logging/

[74] The Apache Software Foundation. 2020. Log4j - Apache Log4j 2. https://logging.
apache.org/log4j/2.x/

[75] The JUnit Team. 2020. JUnit - About. https://junit.org/junit4/
[76] Ferdian Thung, David Lo, and Julia L. Lawall. 2013. Automated Library Rec-

ommendation. In 20th Working Conference on Reverse Engineering, WCRE 2013,
Koblenz, Germany, October 14-17, 2013. IEEE Computer Society, 182ś191. https:
//doi.org/10.1109/WCRE.2013.6671293

[77] Marat Valiev, Bogdan Vasilescu, and James D. Herbsleb. 2018. Ecosystem-level de-
terminants of sustained activity in open-source projects: a case study of the PyPI
ecosystem. In Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018.
ACM, 644ś655. https://doi.org/10.1145/3236024.3236062

[78] Enrique Larios Vargas, Maurício Finavaro Aniche, Christoph Treude, Magiel
Bruntink, and Georgios Gousios. 2020. Selecting third-party libraries: the
practitioners’ perspective. In ESEC/FSE ’20: 28th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 245ś256. https:
//doi.org/10.1145/3368089.3409711

[79] Benoît Verhaeghe, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Laurent
Deruelle, Stéphane Ducasse, and Mustapha Derras. 2019. GUI Migration using
MDE from GWT to Angular 6: An Industrial Case. In 26th IEEE International Con-
ference on Software Analysis, Evolution and Reengineering, SANER 2019, Hangzhou,
China, February 24-27, 2019. IEEE, 579ś583. https://doi.org/10.1109/SANER.2019.
8667989

[80] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects. In IEEE International Conference on
Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia, September
28 - October 2, 2020. IEEE, 35ś45. https://doi.org/10.1109/ICSME46990.2020.00014

[81] Bowen Xu, Le An, Ferdian Thung, Foutse Khomh, and David Lo. 2020. Why rein-
venting the wheels? An empirical study on library reuse and re-implementation.
Empir. Softw. Eng. 25, 1 (2020), 755ś789. https://doi.org/10.1007/s10664-019-
09771-0

[82] Shengzhe Xu, Ziqi Dong, and Na Meng. 2019. Meditor: inference and application
of API migration edits. In Proceedings of the 27th International Conference on
Program Comprehension, ICPC 2019, Montreal, QC, Canada, May 25-31, 2019. IEEE
/ ACM, 335ś346. https://doi.org/10.1109/ICPC.2019.00052

[83] Likang Yin and Vladimir Filkov. 2020. Team Discussions and Dynamics Dur-
ing DevOps Tool Adoptions in OSS Projects. In 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 697ś708. https://doi.org/10.1145/3324884.3416640

[84] Ahmed Zerouali, Eleni Constantinou, Tom Mens, Gregorio Robles, and Jesús M.
González-Barahona. 2018. An Empirical Analysis of Technical Lag in npm Pack-
age Dependencies. In New Opportunities for Software Reuse - 17th International
Conference, ICSR 2018, Madrid, Spain, May 21-23, 2018, Proceedings. Springer,
95ś110. https://doi.org/10.1007/978-3-319-90421-4_6

[85] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010.
Mining API mapping for language migration. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010. ACM, 195ś204. https://doi.org/10.1145/1806799.
1806831

[86] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael
Pradel. 2019. Small World with High Risks: A Study of Security Threats in
the npm Ecosystem. In 28th USENIX Security Symposium, USENIX Security 2019,
Santa Clara, CA, USA, August 14-16, 2019. USENIX Association, 995ś1010.

490

https://doi.org/10.1109/SANER.2015.7081869
https://doi.org/10.1007/s10664-017-9521-5
https://doi.org/10.1145/3368089.3409705
https://snyk.io/
https://snyk.io/
https://doi.org/10.1109/MSR.2019.00031
https://doi.org/10.1109/TSE.2020.2993758
https://doi.org/10.1109/ASE.2017.8115621
https://doi.org/10.1007/s10664-007-9040-x
https://mvnrepository.com/repos/central
https://mvnrepository.com/repos/central
https://doi.org/10.1016/j.jss.2019.110460
https://www.npmjs.com/
https://alternativeto.net/
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
https://doi.org/10.1007/s10664-018-9613-x
https://doi.org/10.1145/3239235.3268920
http://logback.qos.ch/
http://www.slf4j.org/
https://doi.org/10.1109/INFVIS.2005.1532152
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1145/2950290.2950305
https://doi.org/10.1145/2950290.2950305
https://snyk.io/wp-content/uploads/jvm_2020.pdf
https://snyk.io/wp-content/uploads/jvm_2020.pdf
https://www.whitesourcesoftware.com/
https://doi.org/10.1109/MSR.2019.00059
https://doi.org/10.1007/s10664-020-09914-8
https://stackoverflow.com/questions/61906251/can-i-squash-a-merge-commit-with-one-of-its-predecessors
https://stackoverflow.com/questions/61906251/can-i-squash-a-merge-commit-with-one-of-its-predecessors
https://doi.org/10.1145/3359210
https://doi.org/10.1109/WCRE.2012.38
https://doi.org/10.1109/WCRE.2013.6671294
https://doi.org/10.1002/smr.1660
https://logging.apache.org/log4j/1.2/
https://logging.apache.org/log4j/1.2/
https://commons.apache.org/proper/commons-logging/
https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://junit.org/junit4/
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1109/WCRE.2013.6671293
https://doi.org/10.1145/3236024.3236062
https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1145/3368089.3409711
https://doi.org/10.1109/SANER.2019.8667989
https://doi.org/10.1109/SANER.2019.8667989
https://doi.org/10.1109/ICSME46990.2020.00014
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1007/s10664-019-09771-0
https://doi.org/10.1109/ICPC.2019.00052
https://doi.org/10.1145/3324884.3416640
https://doi.org/10.1007/978-3-319-90421-4_6
https://doi.org/10.1145/1806799.1806831
https://doi.org/10.1145/1806799.1806831

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Data Collection
	3.1 Collecting Projects and Libraries
	3.2 Computing Dependency Changes
	3.3 Identifying Library Migrations

	4 RQ1: How common are library migrations?
	4.1 RQ1.1: Removal Frequency Analysis
	4.2 RQ1.2: Migration Frequency Analysis

	5 RQ2: How do migrations happen between libraries?
	5.1 Methodology
	5.2 Results

	6 RQ3: What are the frequently mentioned reasons when developers conduct a library migration?
	6.1 Methodology
	6.2 Results

	7 Discussion
	7.1 Takeaways for Practitioners
	7.2 Threats to Validity

	8 Conclusion and Future Work
	Acknowledgments
	References

