
GFI-Bot: Automated Good First Issue Recommendation on GitHub
Hao He∗

Peking University
Beijing, China

heh@pku.edu.cn

Haonan Su∗
Peking University
Beijing, China

haonan.su@pku.edu.cn

Wenxin Xiao∗
Peking University
Beijing, China

wenxin.xiao@stu.pku.edu.cn

Runzhi He∗
Peking University
Beijing, China

rzhe@pku.edu.cn

Minghui Zhou∗†
Peking University
Beijing, China

zhmh@pku.edu.cn

ABSTRACT

To facilitate newcomer onboarding, GitHub recommends the use of
“good first issue” (GFI) labels to signal issues suitable for newcomers
to resolve. However, previous research shows that manually labeled
GFIs are scarce and inappropriate, showing a need for automated
recommendations. In this paper, we present GFI-Bot (accessible at
https://gfibot.io), a proof-of-concept machine learning powered bot
for automated GFI recommendation in practice. Project maintainers
can configure GFI-Bot to discover and label possible GFIs so that
newcomers can easily locate issues for making their first contribu-
tions. GFI-Bot also provides a high-quality, up-to-date dataset for
advancing GFI recommendation research.

CCS CONCEPTS

• Software and its engineering→ Open source model.

KEYWORDS

open-source software, onboarding, good first issue, software bot
ACM Reference Format:

Hao He, Haonan Su, Wenxin Xiao, Runzhi He, and Minghui Zhou. 2022.
GFI-Bot: Automated Good First Issue Recommendation on GitHub. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’22),
November 14–18, 2022, Singapore, Singapore. ACM, New York, NY, USA,
5 pages. https://doi.org/10.1145/3540250.3558922

1 INTRODUCTION

For an open-source software (OSS) project to sustain itself in the
long term, it must be able to attract, onboard, and retain newcom-
ers [22, 23]. However, OSS onboarding is known to be very difficult
with formidable knowledge, technical, and social barriers [12, 14],
among which newcomers report finding a way to start as the most
∗All authors are also affiliated with the Key Laboratory of High Confidence Software
Technologies, Ministry of Education, Beijing, China
†Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9413-0/22/11. . . $15.00
https://doi.org/10.1145/3540250.3558922

challenging barrier to contribute [13]. To make onboarding eas-
ier for newcomers, it is generally recommended that OSS projects
should curate a list of development tasks for newcomers [15]. For
this purpose, GitHub recommends project maintainers to use “good
first issue” (GFI) labels to explicitly highlight newcomer contribu-
tion opportunities in open issues [3].

Despite the increasing popularity of GFI labels, they are currently
added by project maintainers through manual labeling, which has
two major limitations [6, 16]. First, manually labeled GFIs tend to
be scarce and insufficient for newcomers. For example, in a sample
of 46 highly popular GitHub projects that have adopted GFI labels,
only 1.5% of their issues are labeled with GFI [6]. Such scarcity limits
GFI’s usefulness and frustrates newcomers [2], as indicated by a
Reddit post [1]: looking to contribute to open source, but issues labeled
good-first-issue are all taken. Second, project maintainers may miss
GFIs or misjudge an issue as a GFI due to the cognitive gap between
experts and novices [5, 18]. Tan et al. [16] find that 40.9% of GFIs are
not solved by newcomers, 31.2% of newcomers fail to solve a GFI
even after several attempts, and newcomers complain most about
GFIs being inappropriate. Therefore, we believe it will be extremely
beneficial to have an automated recommender system that learns
the characteristics of GFIs from historical issue resolution data and
recommends likely GFIs from the latest open issues.

In our previous work [21], we proposed RecGFI, a machine learn-
ing (ML) powered approach for GFI recommendation. RecGFI mod-
els an issue with heterogeneous features from issue content, re-
porter & repository background, and issue comments and events.
It further learns GFI characteristics from issues actually resolved
by newcomers using an XGBoost classifier [7]. We have demon-
strated the effectiveness of RecGFI through two datasets built from
GHTorrent [9] and a preliminary real-world evaluation. However,
the practical usefulness of our previous RecGFI implementation is
still limited with the following gaps:

• The datasets used in RecGFI rely on GHTorrent and thus cannot
be updated regularly (the last GHTorrent dump is released in
March 2021). They may also contain noises due to a data gap in
GHTorrent [10, 20]. Ideally, a GFI recommender system should
be able to learn from an up-to-date dataset of historical resolved
issues while maintaining efficiency and scalability on real OSS
projects (whose data volume is often large).

• RecGFI does not have a mechanism for project maintainers to
integrate the recommendations into their project workflows.

• RecGFI also does not have an interface for newcomers to explore
and discover GFIs based on their skills, personal interests, etc.

1751

https://gfibot.io
https://doi.org/10.1145/3540250.3558922
https://doi.org/10.1145/3540250.3558922

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Hao He, Haonan Su, Wenxin Xiao, Runzhi He, and Minghui Zhou

In this paper, we present GFI-Bot, a RecGFI-based proof-of-
concept implementation to bridge the aforementioned gaps. The
key characteristics of GFI-Bot are:

• GFI-Bot builds dataset and trains ML models using only data
from GitHub APIs so that GFI-Bot can work on any GitHub
project. To minimize GitHub API rate consumption, GFI-Bot
supports incremental updates and training based on previously
collected repository data and trained ML models.

• GFI-Bot can be configured by project maintainers to perform
certain actions on open issues (e.g., adding labels and leaving
comments) based on its recommendations.

• GFI-Bot provides an interactive web portal for newcomers to
explore GitHub projects and GFI recommendations; project main-
tainers can also use the web portal for monitoring the status of
GFI-Bot (e.g., model performance) on their repositories.

We prototype and demonstrate GFI-Bot on 100 GitHub projects,
most of which are renowned OSS projects such as pandas, Scikit-
learn, Material UI, VS Code, etc. GFI-Bot can generate GFI recom-
mendations for the 100 projects and perform incremental updates
on a regular basis. The trained models can reach a global perfor-
mance of up to 0.8302 AUC in the current dataset of 159,919 issues.
To the best of our knowledge, GFI-Bot is the first ML-powered
practical tool for automated GFI recommendation in OSS projects.1

GFI-Bot is available at https://gfibot.io. Its source code is open-
source (licensed under GPL-v3) and accessible at https://github.
com/osslab-pku/gfi-bot. The GFI recommendation dataset is avail-
able at https://doi.org/10.5281/zenodo.6665931. We provide a short
introduction video for GFI-Bot at http://video.gfibot.io.

2 BACKGROUND

2.1 The GFI Recommendation Problem

Given a list of open issues in a GitHub project, the goal of a GFI
recommender system is to find a subset of possible GFIs or to rank
the issues based on their predicted GFI probability. In either case,
the underlying problem is to learn a model 𝑓 (·) from historical
issue data to make GFI predictions on open issues, a typical binary
classification problem in machine learning.

There are multiple ways to define ground truth in historical is-
sues. For example, Huang et al. [11] use issues with GFI (or similar)
labels as positive samples and the remaining issues as negative sam-
ples for model training. However, there is a discrepancy between
issues with a GFI label and issues resolved by newcomers [16], so a
model trained from this ground truth may be biased toward main-
tainers’ judgment instead of newcomers’ perception. In RecGFI, we
use issues actually resolved by newcomers as positive samples and
the remaining issues as negative samples. We consider an issue re-
solver as a newcomer if they have contributed less than 𝑘 commits
before this issue is resolved. Here 𝑘 is offered as a hyperparameter
due to our observation that newcomers may continue to seek GFIs
even if they have successfully made one or two contributions [16].

1Existing tools in the wild only provide label-based recommendations (i.e., they only list
issues with “good first issue” or similar labels), e.g., https://goodfirstissue.dev/, https:
//goodfirstissues.com/, https://github.com/nodejs/node/contribute. Although GitHub
claims to be developing an ML-based GFI recommendation feature [4], we cannot find
any evidence of its deployment in practice.

MongoDB Database

Data Collection Model Training

{ RESTful }

Raw Responses

Latest Issue
Data

Information about
Last Update

Latest Issue
Data

GFI
Predictions

Local File System

Last Trained Model

Web Portal GitHub App

GFI
Predictions

Registered New
GitHub Repositories

GFI Predictions, Training
Progress, and Performance Public Offline

Dataset for Model
Evaluation

Newcomers Project Maintainers

Explore GFIs Register & Configure Comment & Label

GitHub Issues

Figure 1: An Overview of the GFI-Bot Architecture

During ground truth construction, it is important to restore
issues to their precise state before issue resolution. Otherwise, in-
formation from the future may be leaked into the dataset and leads
to overly optimistic performance evaluation results [17].

2.2 RecGFI

The remaining challenges of GFI recommendation is to identify
viable features from issues and design an appropriate model for
learning and prediction. In RecGFI, we have conducted extensive
feature engineering and identified a set of features computed from
issue content (titles, descriptions, and labels), issue background
(reporter and project information), and issue dynamics (comments,
events, and participants).2 Theoretically, all features can be also
computed using data from GitHub APIs but features related to
GitHub-wide user profiles (e.g., number of stars received in their
contributed repositories) require an excessive amount of API rate
to compute. To limit API rate consumption and maintain scalability,
we exclude these features for issue participants (i.e., commenters
and event actors) in the current GFI-Bot implementation.

RecGFI achieves the highest overall performance when using
XGBoost [7] as the underlying ML model. XGBoost also bears ad-
vantages in production ML systems. For example, it is possible to
deploy XGBoost on low-cost cloud instances as its training and
inference are highly efficient and CPU-friendly. It can also update
trained models incrementally with new training data. In GFI-Bot,
we use the same XGBoost configuration as in RecGFI.

3 GFI-BOT IMPLEMENTATION

Figure 1 presents an overview of the current GFI-Bot architecture
which has four main modules: data collection, model training, a web
portal, and a GitHub App. The four modules work independently
as standalone processes and are decoupled by a central MongoDB
database, which serves as “a single source of truth” and contains
information such as registered repositories, issue datasets, training
logs, GFI predictions, etc. A GFI recommendation dataset can be
periodically dumped from the MongoDB database for conducting
sophisticated offline evaluations or developing new ML models.

GFI-Bot works on a list of GitHub repositories (which can be
configured during initial deployment or later added by registered
users in the web portal). For each repository, the data collection
module collects and incrementally updates necessary issue data
2See the original paper [21] for more details.

1752

https://gfibot.io
https://github.com/osslab-pku/gfi-bot
https://github.com/osslab-pku/gfi-bot
https://doi.org/10.5281/zenodo.6665931
http://video.gfibot.io
https://goodfirstissue.dev/
https://goodfirstissues.com/
https://goodfirstissues.com/
https://github.com/nodejs/node/contribute

GFI-Bot: Automated Good First Issue Recommendation on GitHub ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

using GitHub REST and GraphQL APIs. The data will be used by the
model training module to update the last trained models and make
predictions for all open issues. During data collection and model
training, project maintainers can use the web portal to inspect train-
ing progress, performance, and the GFI predictions. The same web
portal can also be used by newcomers to explore registered reposi-
tories and recommended GFIs in these repositories. Finally, project
maintainers can configure a GitHub App to automatically comment
or label issues in their repository based on the GFI predictions.

At the time of writing, GFI-Bot is deployed on an Oracle Linux
server with 4 cores, 32GiB memory, and 96GB storage. All four
modules, except the web portal frontend, are implemented with
6,592 lines of Python code. The web portal frontend is implemented
with 5,058 lines of TypeScript, 2,289 lines of JavaScript, and 1,163
lines of CSS using the React.js framework. In the remainder of this
section, we will introduce each module in more detail.

3.1 Data Collection

For each configured repository, the data collection module needs to
collect all necessary data for feature computation. Since the compu-
tation of many features requires full repository history (e.g., the # of
previous commits by the issue reporter at the time of issue creation),
the module collects repository metadata, all commits, all issues, and
all pull requests (PRs) using the RESTful API (which consumes
less API rate with large pagination). The module also collects user
global GitHub profiles for all issue reporters and repository owners
(including issues, PRs, commits, code reviews, and stars received) to
support the characterization of their OSS expertise in general. This
is implemented using the GraphQL API with more functionalities
and flexibility. Since GitHub imposes an API rate limit of 5000 per
hour for each token, the initial collection may take up to several
hours, but all later collections will be done incrementally based on
the previously collected data which will be much faster.

The module then outputs a dataset for all resolved issues (for
training and prediction) and all open issues (for prediction). If an
issue is closed by a PR or a commit, it will be marked as a resolved
issue and the PR/commit author will be recorded as the resolver. For
each resolved issue, themodule computes the features and generates
data points at two time points: issue creation and issue resolution.
This is because an open issue can be of any state between the two
time points and we want the model to also learn the dynamics after
issue creation and effectively make predictions for open issues at all
stages (e.g., initial report, discussed, labeled, triaged, etc.). Finally,
for open issues, the module computes features with their current
state and marks them as test data with no ground truth labels.

We build a latest dataset with the same 100 projects used in the
RecGFI evaluation. At the time of writing, GFI-Bot have collected
2,032,988 commits, 907,869 issues (114,799 open) and 941,232 PRs.
Among the 793,070 closed issues, we have identified 159,919 issues
resolved by commits/PRs and they will be used for model training.
This dataset can be incrementally updated on a regular basis.

3.2 Model Training

With a curated dataset from the data collection module, the model
training module is relatively straightforward. For a list of resolved
issues (i.e., training data) and a given 𝑘 , the module splits issues into
batches (to avoid exceeding the memory limit in cloud instances)

Table 1: GFI-Bot Performance on the 100 GitHub Projects

used in RecGFI (159,919 Resolved Issues in Total)

𝑘 # Newcomer-Resolved AUC Accuracy Recall

1 17,147 0.8172 0.7082 0.7699
2 21,649 0.8195 0.7042 0.7892

3 24,533 0.8302 0.7625 0.7197
4 26,623 0.8123 0.7599 0.6868
5 28,308 0.8162 0.7626 0.7001

and iteratively trains an XGBoost model. If an older model is al-
ready available (i.e., the case of incremental training), the module
identifies newly resolved issues and only uses the new issues to
update the old model. To evaluate model performance, the module
additionally trains a model using 90% of (older) training data and
computes AUC, accuracy, and recall with the remaining 10% of
(newer) training data. The performance will be reported both glob-
ally and per project so that maintainers can establish confidence
on GFI-Bot and decide whether to adopt GFI-Bot in their projects.

In total, five different models will be trained for 𝑘 ∈ {1, 2, 3, 4, 5},
and five different predictions will be made for each open issue.
Project maintainers can configure which 𝑘 to use for their projects
in the web portal (Section 3.3). Our general recommendations are
𝑘 = 0 for projects with high onboarding barriers and a limited
number of easy issues, and 𝑘 = 3 for projects with many easy issues
and successfully onboarded newcomers.

The global performance at the time of writing (for the 100 GitHub
projects) is presented in Table 1, showing that the model can learn
GFI characteristics well with >0.8 AUCs and 0.7∼0.8 accuracy.
Within-project performance ranges from 0.6978∼1 in terms of AUC.
However, we observe that model performance can fluctuate signif-
icantly with different batch sizes, training orders, feature prepro-
cessing, model hyperparameters, etc., and we are currently working
on the identification of an optimal training strategy.

3.3 Web Portal

The GFI-Bot web portal serves two purposes: for project main-
tainers, they use the web portal to register their repositories and
monitor the current status of GFI-Bot in their repositories; for
newcomers, they use the web portal to browse through repositories
indexed by GFI-Bot and find possible GFIs. We implement two
main pages in the web portal to serve the two purposes.

The first page is for repository registration, data collection and
performance monitoring, and GitHub App configuration. To access
this page, a user must log in through an existing GitHub account.
Their login API token will be used to perform data collection for
their registered repositories. For each registered repository, the
page displays data collection and model training progress, model
performance, and currently recommended GFIs. It also provides a
GitHub App configuration panel for configuring GFI-Bot to per-
form actions in the registered repository (Section 3.4).

The second page is for listing repositories and recommended
GFIs for newcomers. The repositories can be ordered by popular-
ity, programming language, tags, etc., to support newcomer explo-
rations. For each repository, the page lists GFIs by their predicted
probability, and users can find more information about a specific
issue by clicking and expanding the issue.

1753

ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore Hao He, Haonan Su, Wenxin Xiao, Runzhi He, and Minghui Zhou

(a) Registering Repositories (b) Configuring GFI-Bot (c) Installing GitHub App

(d) Exploring Repositories and GFIs (e) Viewing a Specific GFI

Figure 2: GFI-Bot Interfaces for Project Maintainers (2a, 2b, 2c) and Newcomers (2d, 2e)

3.4 GitHub App

The final module of GFI-Bot is a GitHub App (available at https:
//github.com/apps/GFI-Bot) that can be configured by project main-
tainers to automatically comment or label issues in their repository
based on the GFI predictions. To avoid being perceived as noisy,
we provide flexible configurations for specifying GFI-Bot’s exact
behavior on GitHub, following design principles suggested in the
software engineering bot literature [8, 10, 19]. Current configura-
tion options include the 𝑘 , the classification threshold, whether to
comment on issues, which specific label to add on GFIs, etc. We plan
to add more fine-grained behavior controls (e.g., comment template,
when to label & comment) and project integration configurations
(e.g., include or exclude issues with certain labels) in the future.

4 USE CASES

In this section, we describe how GFI-Bot can be used in practice
by presenting two use cases (one for project maintainers and one
for newcomers) and the roles of GFI-Bot in the two cases.

4.1 Project Maintainers

Suppose an OSS project is willing to see contributions from new-
comers but its maintainers do not have time to curate and label
GFIs. In this case, the maintainer can register their project in GFI-
Bot (Figure 2a). Upon registration, GFI-Bot will immediately begin
to fetch data, build a dataset, make predictions for open issues in
that project, and send a notification when this process has finished.
Then, they can find predicted GFIs by clicking the project card and
tuning configurations for their project (Figure 2b). If the results are
satisfactory, they can then install the GitHub App to label and com-
ment on issues based on their specified configurations (Figure 2c).
Finally, they can add a repository badge provided by GFI-Bot in
their README (e.g.,) so that newcom-
ers can know their project is using GFI-Bot and click the badge to
see the project’s GFI recommendations in GFI-Bot web portal.

4.2 Newcomers

Suppose a newcomer is willing to contribute to OSS but has no
idea where to start. In this case, they can access the GFI-Bot web
portal (https://gfibot.io/) to browse through a list of newcomer-
friendly projects with many possible GFIs (Figure 2d). They can
further rank or filter the projects that match their personal expertise
and interests (based on programming languages, tags, etc.). During
exploration, if they have found some projects or issues of interest,
they can click on the issue to find out more information (Figure 2e).

5 CONCLUSION AND FUTUREWORK

In this paper, we have presented GFI-Bot, an ML-powered bot
prototype for automated GFI recommendation on GitHub. We have
demonstrated how GFI-Bot can effectively recommend GFIs in 100
GitHub projects and how it can support OSS newcomer onboarding
and help projects that are in need of newcomers.

Currently, GFI-Bot is still an early prototype that needs to be
further improved and evaluated in many directions. The data collec-
tion module is still costly in terms of API rate consumption and we
plan to explore more lightweight approaches. For model training,
we plan to explore how feature selection, batch size, dataset bal-
ancing, and model hyperparameters may affect model performance
to derive an optimal training strategy in the low-resource cloud
setting. For the web portal and the GitHub app, significant engi-
neering effort is still needed for improving user experience (e.g.,
responsiveness and transparency). Finally, after GFI-Bot reaches a
certain level of maturity, we plan to conduct real-world user stud-
ies with both OSS newcomers and projects as a comprehensive
evaluation of a GFI recommender system in practice.

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China
Grant 2018YFB1004201 and the National Natural Science Founda-
tion of China Grant 61825201.

1754

https://github.com/apps/GFI-Bot
https://github.com/apps/GFI-Bot
https://gfibot.io/

GFI-Bot: Automated Good First Issue Recommendation on GitHub ESEC/FSE ’22, November 14–18, 2022, Singapore, Singapore

REFERENCES

[1] 2020. Looking to contribute to open source, but issues labeled good-first-issue
are all taken. Retrieved June 15, 2022 from https://www.reddit.com/r/
learnprogramming/comments/j48nkn/looking_to_contribute_to_open_source_
but_issues/

[2] 2020. The “good first issue” myth. Retrieved June 15, 2022 from https://dzhavat.
github.io/2020/07/08/the-good-first-issue-myth.html

[3] 2022. Encouraging helpful contributions to your project with labels. Retrieved
June 14, 2022 from https://docs.github.com/en/communities/setting-up-your-
project-for-healthy-contributions/encouraging-helpful-contributions-to-your-
project-with-labels

[4] 2022. How we built the good first issues feature. Retrieved June 16, 2022 from
https://github.blog/2020-01-22-how-we-built-good-first-issues/

[5] 2022. What makes a good first issue? Retrieved June 15, 2022 from https:
//dev.to/cerchie/what-makes-a-good-first-issue-4fn0

[6] Jan Willem David Alderliesten and Andy Zaidman. 2021. An Initial Exploration
of the "Good First Issue" Label for Newcomer Developers. In 14th IEEE/ACM
InternationalWorkshop on Cooperative and HumanAspects of Software Engineering,
CHASE@ICSE 2021, Madrid, Spain, May 20-21, 2021. IEEE, 117–118. https://doi.
org/10.1109/CHASE52884.2021.00023

[7] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, Balaji Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal,
Dou Shen, and Rajeev Rastogi (Eds.). ACM, 785–794. https://doi.org/10.1145/
2939672.2939785

[8] Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner. 2020. An
empirical study of bots in software development: characteristics and challenges
from a practitioner’s perspective. In ESEC/FSE ’20: 28th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B.
Cohen, and Thomas Zimmermann (Eds.). ACM, 445–455. https://doi.org/10.1145/
3368089.3409680

[9] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s data from a
firehose. In 9th IEEE Working Conference of Mining Software Repositories, MSR
2012, June 2-3, 2012, Zurich, Switzerland, Michele Lanza, Massimiliano Di Penta,
and Tao Xie (Eds.). IEEE Computer Society, 12–21. https://doi.org/10.1109/MSR.
2012.6224294

[10] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2022. Automating Depen-
dency Updates in Practice: An Exploratory Study on GitHub Dependabot. CoRR
abs/2206.07230 (2022). https://doi.org/10.48550/arXiv.2206.07230

[11] Yuekai Huang, Junjie Wang, Song Wang, Zhe Liu, Dandan Wang, and Qing
Wang. 2021. Characterizing and Predicting Good First Issues. In ESEM ’21:
ACM / IEEE International Symposium on Empirical Software Engineering and
Measurement, Bari, Italy, October 11-15, 2021, Filippo Lanubile, Marcos Kalinowski,
and Maria Teresa Baldassarre (Eds.). ACM, 13:1–13:12. https://doi.org/10.1145/
3475716.3475789

[12] Christopher J. Mendez, Hema Susmita Padala, Zoe Steine-Hanson, Claudia Hilder-
brand, Amber Horvath, Charles Hill, Logan Simpson, Nupoor Patil, Anita Sarma,
and Margaret M. Burnett. 2018. Open source barriers to entry, revisited: a so-
ciotechnical perspective. In Proceedings of the 40th International Conference on

Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018,
Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman (Eds.).
ACM, 1004–1015. https://doi.org/10.1145/3180155.3180241

[13] Ifraz Rehman, Dong Wang, Raula Gaikovina Kula, Takashi Ishio, and Kenichi
Matsumoto. 2022. Newcomer OSS-Candidates: Characterizing Contributions
of Novice Developers to GitHub. Empir. Softw. Eng. 27, 5 (2022), 109. https:
//doi.org/10.1007/s10664-022-10163-0

[14] Igor Steinmacher, Marco Aurélio Graciotto Silva, Marco Aurélio Gerosa, and
David F. Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Inf. Softw. Technol. 59 (2015), 67–85.
https://doi.org/10.1016/j.infsof.2014.11.001

[15] Igor Steinmacher, Christoph Treude, and Marco Aurélio Gerosa. 2019. Let Me In:
Guidelines for the Successful Onboarding of Newcomers to Open Source Projects.
IEEE Softw. 36, 4 (2019), 41–49. https://doi.org/10.1109/MS.2018.110162131

[16] Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues
on GitHub. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann (Eds.). ACM, 398–409. https://doi.org/10.1145/3368089.3409746

[17] Feifei Tu, Jiaxin Zhu, Qimu Zheng, and Minghui Zhou. 2018. Be careful of when:
an empirical study on time-related misuse of issue tracking data. In Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, Gary T. Leavens, Alessandro
Garcia, and Corina S. Pasareanu (Eds.). ACM, 307–318. https://doi.org/10.1145/
3236024.3236054

[18] Lev Vygotsky. 1978. Interaction between learning and development. Readings on
the Development of Children 23, 3 (1978), 34–41.

[19] Mairieli Santos Wessel, Igor Wiese, Igor Steinmacher, and Marco Aurélio Gerosa.
2021. Don’t Disturb Me: Challenges of Interacting with Software Bots on Open
Source Software Projects. Proc. ACM Hum. Comput. Interact. 5, CSCW2 (2021),
1–21. https://doi.org/10.1145/3476042

[20] Marvin Wyrich, Raoul Ghit, Tobias Haller, and Christian Müller. 2021. Bots Don’t
Mind Waiting, Do They? Comparing the Interaction With Automatically and
Manually Created Pull Requests. In 3rd IEEE/ACM International Workshop on Bots
in Software Engineering, BotSE@ICSE 2021, Madrid, Spain, June 4, 2021. IEEE, 6–10.
https://doi.org/10.1109/BotSE52550.2021.00009

[21] Wenxin Xiao, Hao He, Weiwei Xu, Xin Tan, Jinhao Dong, and Minghui Zhou.
2022. Recommending Good First Issues in GitHub OSS Projects. In Proceedings of
the 44th International Conference on Software Engineering, ICSE 2022, Pittsburgh,
PA, USA, May 21–29, 2022. ACM. https://hehao98.github.io/files/2022-recgfi.pdf

[22] Minghui Zhou and Audris Mockus. 2012. What make long term contributors:
Willingness and opportunity in OSS community. In 34th International Conference
on Software Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland, Martin
Glinz, Gail C. Murphy, and Mauro Pezzè (Eds.). IEEE Computer Society, 518–528.
https://doi.org/10.1109/ICSE.2012.6227164

[23] Minghui Zhou, Audris Mockus, Xiujuan Ma, Lu Zhang, and Hong Mei. 2016.
Inflow and Retention in OSS Communities with Commercial Involvement: A
Case Study of Three Hybrid Projects. ACM Trans. Softw. Eng. Methodol. 25, 2
(2016), 13:1–13:29. https://doi.org/10.1145/2876443

1755

https://www.reddit.com/r/learnprogramming/comments/j48nkn/looking_to_contribute_to_open_source_but_issues/
https://www.reddit.com/r/learnprogramming/comments/j48nkn/looking_to_contribute_to_open_source_but_issues/
https://www.reddit.com/r/learnprogramming/comments/j48nkn/looking_to_contribute_to_open_source_but_issues/
https://dzhavat.github.io/2020/07/08/the-good-first-issue-myth.html
https://dzhavat.github.io/2020/07/08/the-good-first-issue-myth.html
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/encouraging-helpful-contributions-to-your-project-with-labels
https://github.blog/2020-01-22-how-we-built-good-first-issues/
https://dev.to/cerchie/what-makes-a-good-first-issue-4fn0
https://dev.to/cerchie/what-makes-a-good-first-issue-4fn0
https://doi.org/10.1109/CHASE52884.2021.00023
https://doi.org/10.1109/CHASE52884.2021.00023
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1145/3368089.3409680
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.48550/arXiv.2206.07230
https://doi.org/10.1145/3475716.3475789
https://doi.org/10.1145/3475716.3475789
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1007/s10664-022-10163-0
https://doi.org/10.1007/s10664-022-10163-0
https://doi.org/10.1016/j.infsof.2014.11.001
https://doi.org/10.1109/MS.2018.110162131
https://doi.org/10.1145/3368089.3409746
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1145/3236024.3236054
https://doi.org/10.1145/3476042
https://doi.org/10.1109/BotSE52550.2021.00009
https://hehao98.github.io/files/2022-recgfi.pdf
https://doi.org/10.1109/ICSE.2012.6227164
https://doi.org/10.1145/2876443

	Abstract
	1 Introduction
	2 Background
	2.1 The GFI Recommendation Problem
	2.2 RecGFI

	3 GFI-Bot Implementation
	3.1 Data Collection
	3.2 Model Training
	3.3 Web Portal
	3.4 GitHub App

	4 Use Cases
	4.1 Project Maintainers
	4.2 Newcomers

	5 Conclusion and Future Work
	Acknowledgments
	References

