
Demystifying Software Release Note Issues on GitHub

Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou∗

School of Computer Science and School of Software & Microelectronics, Peking University, Beijing, China

Key Laboratory of High Confidence Software Technologies, Ministry of Education, Beijing, China

{wujianyu,heh,gaokai19,zhmh}@pku.edu.cn,wenxin.xiao@stu.pku.edu.cn

ABSTRACT

Release notes (RNs) summarize main changes between two consec-

utive software versions and serve as a central source of informa-

tion when users upgrade software. While producing high quality

RNs can be hard and poses a variety of challenges to developers,

a comprehensive empirical understanding of these challenges is

still lacking. In this paper, we bridge this knowledge gap by manu-

ally analyzing 1,731 latest GitHub issues to build a comprehensive

taxonomy of RN issues with four dimensions: Content, Presenta-

tion, Accessibility, and Production. Among these issues, nearly half

(48.47%) of them focus on Production; Content, Accessibility, and

Presentation take 25.61%, 17.65%, and 8.27%, respectively. We find

that: 1) RN producers are more likely to miss information than

to include incorrect information, especially for breaking changes;

2) improper layout may bury important information and confuse

users; 3) many users find RNs inaccessible due to link deterioration,

lack of notification, and obfuscate RN locations; 4) automating and

regulating RN production remains challenging despite the great

needs of RN producers. Our taxonomy not only pictures a roadmap

to improve RN production in practice but also reveals interesting

future research directions for automating RN production.

CCS CONCEPTS

• Software and its engineering→ Documentation.

KEYWORDS

release engineering, release note, empirical study, taxonomy

ACM Reference Format:

Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou. 2022. Demystify-

ing Software Release Note Issues on GitHub. In 30th International Conference

on Program Comprehension (ICPC ’22), May 16–17, 2022, Virtual Event, USA.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3524610.3527919

1 INTRODUCTION

When releasing a new software version, developers often produce a

release note (RN) which summarizes main changes in the software

since its previous release [117]. RNs serve as means of communi-

cation between the software and its users [102]. Consulting RNs

∗Minghui Zhou is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPC ’22, May 16–17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9298-3/22/05. . . $15.00
https://doi.org/10.1145/3524610.3527919

is considered as an essential best practice when upgrading soft-

ware [10]. Users typically use RNs to comprehend: 1) potentially

beneficial changes, such as bug fixes, enhancements, new features,

to help them decide whether to upgrade to the new release; 2) po-

tentially interrupting changes, along with guidance for migration

or mitigation. Besides, internal developers use RNs to formally doc-

ument development progress and plans for the next release [102].1

For large software projects, the production of RNs is both time-

consuming and error-prone. The survey by Moreno et al. [117]

found that “creating a release note by hand is a difficult and effort-

prone activity that can take up to eight hours”. The tight deadlines in

agile software development may even tempt developers to reduce

effort put into RNs [66]. Consequently, the produced RNs may be

of low quality (bad organization, missing important changes, etc.),

which brings various problems to software users. However, pre-

vious researches [97, 102, 117, 126] mainly focus on categorizing

RN content and automated RN generation, while a systematic un-

derstanding of real RN issues in practice (i.e., how RNs go wrong

or fail to meet users’ expectations) is still lacking. Such an under-

standing can help formulate best practices and reveal important

future research directions for automating and regulating RN produc-

tion. Therefore, to bridge the knowledge gap, we ask the following

research question (RQ):What are the RN issues faced by developers?

To answer this RQ, we collect 1,731 RN-related GitHub issues

from GHArchive [13] and build a comprehensive taxonomy of

these issues using multiple rounds of open coding. The taxonomy is

further validated through semi-structured interviews. The final tax-

onomy consists of four main dimensions: Content (251, 25.61%),

Presentation (81, 8.27%), Accessibility (173, 17.65%), and Pro-

duction (475, 48.47%), that reveals the challenges of using RNs

and therefore the problems of producing RNs. To the best of our

knowledge, this is the first paper that provides such a taxonomy.

Based on our taxonomy, we derive a practitioner-oriented check-

list for RN production, which involves the selection of appropriate

content, organization, and writing style for RNs. We additionally

provide recommendations for regulating RN production and ensur-

ing RN completeness. Finally, we identify open research challenges,

which can benefit the automation of RN production and testing of

RN completeness/correctness in practice. We provide a replication

package at https://doi.org/10.6084/m9.figshare.18777650.

2 BACKGROUND AND RELATEDWORK

In the early years of software development, software products are

often released “once and for all” with no modifications after the

1Note that the term “release note” often refers to the documentation that refine and
summarize change logs. However, in practice many software projects directly use
change logs as their release notes, so some results in our paper refer to both.
Throughout this paper, we use the term “user” to refer to anyone reading RNs or
referring RNs for their tasks. A user can be an internal developer, a downstream
developer, or a software end user.

602

30th IEEE/ACM International Conference on Program Comprehension

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

initial release. However, successful software inevitably evolves into

new versions. When a new version needs to be released, documen-

tation for explaining changes in this version, i.e., Release Note (RN),

emerges as a natural requirement. Although we cannot precisely

trace the history of the earliest RNs, the term “release note” has at

least been used in the software industry since the 1980s [108].

From the beginning of the 21st century, the movement toward

agile software development advocates “release early, release often”

so that a tight feedback loop between developers and users can be

created [119]. Consequently, the required effort to manage changes

between consecutive software versions has significantly increased.

Then, software projects begin to formulate systematic agendas

for software release management, in which RNs are perhaps the

most important kind of documentation [98]. Nowadays, complex

software systems such as Firefox have to deal with a tremendous

amount (up to thousands) of patches during each release cycle,

which creates a formidable challenge in tracking changes to be in-

cluded in a RN and producing the final RN. For Firefox, the Mozilla

team defines a systematic process, including workflows, conven-

tions, and automated tooling, to support the creation of RNs [12].

Meanwhile, RNs remain an understudied research topic. Early

studies only use RNs as a data source for understanding other soft-

ware maintenance and evolution topics [100, 116, 121, 127]. It is

not until the recent decade do researchers begin to study RNs them-

selves with two main fronts: empirical studies for understanding

RN practices and approaches for automated RN generation.

2.1 Understanding Release Note Practices

Moreno et al. [117] manually analyze 1,000 RNs from 58 industrial

and open source projects. They identify 17 common change types

in RNs, such as fixed bugs, new features, and new code components.

Similarly, Abebe et al. [97] manually analyze 85 RNs from 15 soft-

ware projects and identified six types of information: title, system

overview, resource requirement, installation, addressed issues, and

caveat. Bi et al. [102] study the characteristics of 32,425 RNs from

1,000 GitHub projects. They classify common RN content into eight

topics including issues fixed, new features, system internal changes,

etc. They find that RN content significantly differs across software

in different domains, e.g., for application software and system soft-

ware, new features are most frequently documented. They further

uncover discrepancies between RN producers and users through

interviews and surveys. However, it is still unclear what content

tends to go wrong in RNs, which may have a different distribution.

The nature of RN is also discussed in some work related to soft-

ware documentation. Aghajani et al. [98] perform a survey with

146 developers to investigate what kind of documentation types

are considered important in software development. They find that

although the majority of developers consider RNs and change logs

as important, their absence is also among their frequently encoun-

tered issues. Developers also suggest including documentation such

as RNs as mandatory items in the release checklist.

Despite the discrepancies between RN producers and users as

identified by Bi et al. [102], we still lack a comprehensive empirical

understanding of real issues in RN production and usage. To the

best of our knowledge, this is the first paper toward this direction,

and our taxonomy provides a significant amount of new empirical

evidence for improving RN production in practice.

2.2 Automating Release Note Production

Since producing RNs is both important and effort-prone, develop-

ers naturally begin to explore ways to automate this process. For

software projects managed via a version control system (VCS), the

most straightforward way of producing a RN is to aggregate all

changes from the VCS (e.g., aggregating all commit messages from

Git). However, such simple way of automation comes with severe

drawbacks, as noted by the OpenStack documentation:

“Release notes are not meant to be a replacement for git commit

messages. They should focus on the impact for the user and make that

understandable, even for people who do not know the full technical

context for the patch or project” [92].

To facilitate the production of high quality RNs while reducing

manual effort, many open-source projects begin to adopt tools for

automated RN generation, including Semantic Release [95] (∼14k

stars), github-changelog-generator [14] (∼6k stars), Release It [91]

(∼4k stars), Release Drafter [90] (∼2k stars), etc. All tools make

the assumption that every software change should be documented

using predefined templates or labels so that they can generate RNs

based on predefined rules. For example, Semantic Release requires

developers to write commit messages in the format specified by

Angular Commit Message Conventions [4] with eight types of

predefined changes. These tools are generally designed to be easily

extensible and configurable to fit the needs of different projects.

Even if some automation is adopted, it is still common to post edit

the RNs to summarize changes, highlight, or intrigue readers, etc.

To improve the state of practice, researchers have proposed novel

approaches for automated RN generation. Klepper et al. [113] pro-

pose a semi-automated RN generation tool which extracts change

descriptions from issue trackers and organizes them by labels to

meet the need of a specific audience. Moreno et al. [117] propose a

fully automated RN generation tool, ARENA, which integrates both

changes from VCS and rationales for each change from issue track-

ers into RNs with predefined change categories. Nath et al. [118]

propose to generate RNs from commit messages and pull requests

using text summarization and word embedding techniques. Jiang

et al. [111] propose a language-agnostic approach to produce RNs

from pull request text using deep learning.

While several automated approaches have been proposed by

researchers, we are still not aware of any wide industrial adop-

tion, indicating potential discrepancies between research and prac-

tice. Our work complements existing effort on RN automation by

summarizing best automation practices and reveal future research

directions for improving automated tools.

3 METHODOLOGY

3.1 Data Collection

In this study, we choose to analyze GitHub issues, which developers

use to track ideas, provide feedback, report bugs, and initiate dis-

cussions [1]. We favor GitHub issues over Stack Overflow questions

because GitHub issues contain more information such as reports

and discussions among developers and provide concrete examples

about how RNs fail, apart from developers’ opinions.

3.1.1 Mining GitHub. GitHub is one of the most popular social cod-

ing platforms and provides access control and several collaboration

features such as bug tracking, feature requests, task management

603

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

Table 1: Repository Statistics of the Final Issue Dataset

Median Mean Std. Distribution∗

Age (in Days) 1,483.00 1.676.36 1,058.27

of Commits 1,053.00 7,357.25 36,020.93

of Stars 188.00 4,321.06 13,536.23

of Contributors 28.00 88.23 122.39

of Forks 69.50 1,024.87 3,430.94

of Issues 53.00 426.57 2,517.74

of PRs 5.00 36.22 188.31

of Releases 13.00 60.50 250.59

∗ We increment all values by one to plot the distribution in log-scale.

for every project. It is a commonly used data source for exploring

software issues in previous works [104, 110]. To this end, we use

the GHArchive dataset [13] to collect all GitHub issues that: 1) have

activities (at least one IssueEvent in GHArchive) between January

2021 and June 2021; 2) contain the keyword “release note” in their

titles. We only include the latest GitHub issues (with activities in

2021) because we observe that RN practices are rapidly changing

in open-source communities, and thus data timeliness is vital. For

example, Bi et al. [102] report that developers do not use automated

RN generation tools while the number of automated RN generation

tools is gaining increasing popularity recently (Section 2.2). This

initial selection results in 1,731 issues from 1,019 repositories.

3.1.2 Refining Dataset. Two authors (named as inspectors), both

with over six years of software development experience, further

read all the issues jointly to refine the final dataset. The inspectors

browse through the GitHub issue pages of the all collected issues

together as an initial familiarization of the dataset and exclude 822

issues that are not related to certain problems in RNs (i.e., False

Positives), including the following cases:

Release Statements (491, 28.37%): The issue is only an official

announcement of a release or a release note.

Non-Informative (137, 7.91%): The issue contains too little infor-

mation (e.g., only a few words in title and description) to be

understood by the inspectors.

Irrelevant (121, 6.99%): The issue happens to have the keyword

“release note” in its title but actually refers to a problem not

related to RNs.

Unreachable (42, 2.43%): The issue is no longer available on

GitHub (e.g., the repository is deleted or made private, the issue

is deleted, etc.).

Non-English (17, 0.98%): The issue contains non-English text and

is not understandable by the inspectors.

Mistake (14, 0.81%): The issue reporter misunderstands the RN

and reports a non-existent problem.

The final dataset for our study consists of 909 issues from 722

repositories. The repository statistics are summarized in Table 3,

where we can observe that most issues come from repositories with

long development history, high popularity, and sufficient develop-

ment activities.2 In fact, given that only software with a sufficiently

large user base may consider writing RNs or have users reporting

issues for RNs, it is natural that almost all of these issues come from

mature software repositories. The size of our dataset is comparable

2The long tail distributions of most metrics are expected and common in mining
software repository datasets [107, 131].

Table 2: Statistics for Each Round of Manual Labeling

Round 1 2 3 4 5∗ Total

Analyzed 273 212 212 212 90 909

Cohen’s Kappa - 0.78 0.86 0.87 - -

Newly Added

- #Dimensions 3 1 0 0 0 4

- #Categories 5 2 0 0 0 7

- #Subcategories 7 4 1 0 0 12

- #Leaf Nodes 48 7 8 2 -3 62

∗ The fifth round samples issues from previous four rounds (Sec-
tion 3.2.3, 3.2.4).

to and even larger than similar software engineering studies that

conduct qualitative manual analysis on text (e.g., studies on Stack

Overflow posts and patch descriptions [99, 101, 103, 124, 130]).

3.2 Analysis Method

For the final 909 RN-related issues, we follow an open coding proce-

dure to inductively create the dimensions, categories, subcategories,

and leaf nodes of our taxonomy in a bottom-upway [120]. Similar to

previous works [103, 110], our procedure of taxonomy construction

consists of four steps: pilot construction, extended construction,

developer interview, and reproducibility verification. The four steps

are integrated with a five-round labeling process and the statistics

for each round of labeling are summarized in Table 2.

3.2.1 Pilot Construction. We randomly sample 30% (273) of the

909 issues for a pilot construction of the taxonomy in the first

round with two stages. The inspectors mentioned in Section 3.1.2

independently analyze the underlying RN problems behind the

sampled issues. In the first stage, the inspectors aim to be familiar

with RNs’ issues. They read and reread titles, descriptions, labels,

and comments of each RN-related issue to understand its problems

and intention. Where necessary, they additionally check relevant

code changes (i.e., pull requests/commits) and release notes that re-

veal the final solution adopted by project developers. In the second

stage, the inspectors assign short phrases as initial codes and record

important information to indicate the problems and needs behind

these issues. If an issue is related to multiple problems and needs,

e.g., the RN misses both new features and breaking changes, it will

be assigned with multiple initial codes. After the initial codes are

generated, the inspectors proceed to group similar codes into cate-

gories, create a hierarchical taxonomy of RNs’ issues, and assign

issues to the taxonomy. We include an additional arbitrator, who

has several publications in top-tier software engineering venues

and more than six years of software development experience, to

mediate, discuss, and resolve any disagreement during taxonomy

construction. They continuously go back and forth between cate-

gories and issues to refine the taxonomy until the inspectors and

the arbitrator finally approve all categories in the taxonomy.

3.2.2 Extended Construction. Based on the initial hierarchical tax-

onomy generated in Section 3.2.1, the inspectors and the arbitrator

iteratively conduct independent labeling, conflict resolution, and

taxonomy refinement in the next three rounds. In each round, two

inspectors first independently label one-third of the remaining is-

sues. When they find issues that cannot be labeled in the current

taxonomy, they add them to a temporary Pending category. Then,

the inspectors and the arbitrator organize a meeting to resolve

604

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

labeling conflicts and determine whether new categories should

be added for issues in the Pending category. After the taxonomy is

refined, they update all previously labeled issues into the refined

taxonomy and proceed to the next round. Saturation is reached in

the third round because we add only new leaf nodes (Table 2). We

finish labeling all the issues in the fourth round. In the three rounds

of extended construction, we use Cohen’s Kappa (𝜅) to measure
inter-rater agreement between two inspectors. The 𝜅 values are

0.78, 0.86, and 0.87, respectively, indicating increasing and high

agreement between inspectors.

3.2.3 Developer Interview. To validate our taxonomy with practi-

tioners, we interview three industry software engineers from differ-

ent large IT companies. They all have rich experience in publishing

RNs with 1.5, 3, and 7 years of experience, respectively.

We opt for semi-structured interviews. Each of our interviews

begins with the question: what issues have you encountered around

RNs in your software development process? The purpose of this

open-ended question is to see if our taxonomy covers the problems

that developers usually encounter during development. They each

describe three, five, and two issues they encountered based on their

own development experience. Then, we present our taxonomy and

direct them to specific categories of issues in our taxonomy, which

enables them to recall other four previous issues. All issues are

covered by our taxonomy, indicating that our taxonomy has good

coverage even within a different context (i.e., industry setting).

Then, we ask them to review and provide suggestions about

our taxonomy. They think our taxonomy is clear and informative,

though some leaf nodes can be improved. After discussion, we

decide to merge seven leaf nodes into three leaf nodes and split

one leaf node into two leaf nodes finally. The interview time varied

between 46 minutes and 2 hours. All interviews are conducted face

to face with two authors (one is the leader and the other one asks

additional questions when appropriate). The reason is that previous

works [109, 110] show that participants talk much more when more

than two interviewers conduct the interviews.

3.2.4 Reproducibility Verification. One problem remaining with

our taxonomy is reproducibility because we intertwine taxonomy

construction with independent labeling. This is hard to avoid be-

cause the taxonomy is too complex to be precisely defined in one or

two rounds. Although we maintain a code book during the process,

it is still unclear whether others can reproduce the taxonomy using

the same code book. Therefore, we invite two interviewees and one

additional Ph.D. candidate to label issues using our code book. Each

of them is assigned 30 different issues and they return their results

after 3 days.3 Compared with our own results, the 𝜅 values are 0.93,
0.89, and 0.86, respectively, which also indicates a high agreement

and thus good reproducibility.

Our final taxonomy includes four dimensions, seven categories,

12 subcategories, and 62 leaf nodes. The entire manual construction

process takes over two months to finish.

4 RESULTS

Figure 1 illustrates the hierarchical taxonomy of RN issues. We

group all these issues into four dimensions:

3We do not assign more because inspecting, comprehending, and labeling issues takes
significant time and energy which they lack to label more.

(1) Content: What information should RNs convey?

(2) Presentation: How should RNs convey information?

(3) Accessibility: How to make RNs easily accessible?

(4) Production: In what way should RNs be produced?

Each dimension is then hierarchically organized into categories

(e.g., Completeness), subcategories (e.g., Missing), and leaf nodes

(optional, e.g., Missing Breaking Changes). Figure 1 also shows the

number of issues and percentages (within dimension) for all dimen-

sions, categories, subcategories, and leaf nodes in the taxonomy. In

the remainder of this section, we will describe our taxonomy with

representative examples.

4.1 Content

In total, 251 issues discuss the Content of RNs, i.e., what informa-

tion should RNs convey. Issues from the Content dimension can

help better understand 1) what common mistakes developers often

make when producing RNs, 2) what typical users would expect

from RNs, and 3) what purposes RNs should serve as one kind of

project documentation. This dimension consists of two categories:

Completeness and Correctness.

4.1.1 Completeness (157, 62.55%). This category of issues concerns

whether RNs contain both sufficient and necessary information

required by users during software upgrades or required by internal

developers for maintenance purposes. It has three subcategories:

Missing, Insufficient, and Unwanted.

Missing (133, 52.99%) subcategory refers to issues stating that

some information perceived important by end users or internal

developers is not included in the RN at all. The most frequently

missed information in RNs includes:

Breaking Changes (31, 12.35%): Such issues are predominant be-

cause end users directly encounter upgrade failures if they are

not notified of breaking changes from reading RNs. However, it

can be difficult for RN producers to correctly locate and high-

light breaking changes in RNs. For example, a developer from

mongoose notes that (the new version) has many errors, and fixing

them is not just changing a function/field name, because function

parameters/semantics have also changed because of the undocu-

mented breaking changes from v6 to v7 [21].

Links (18, 7.17%): In these issues, developers ask for links to

external materials (e.g., related PR/issues/commits, usage guides,

CVEs, etc.) to better understand information conveyed in RNs.

New Features (16, 6.37%): Some implemented new features may

be ignored in RNs, and (other) developers open issues in need of

documenting their contributions.

Dependency/Environment Specification (13, 5.18%):Undocumented

dependency or environment specification may also accidentally

break clients when users upgrade to new versions.

Migration/Usage Instruction (11, 4.38%): Some developers ask for

migration or usage instructions in RNs to help them understand

the impact of breaking changes and upgrade their client code.

Version Information (11, 4.38%): Some developers open issues to

discuss adding version information in RNs, e.g., release date,

version number & name, checksum, and release status (draft or

final) for easy reference to specific releases.

Attribution (7, 2.79%): Some issues are opened by repository mem-

bers to discuss missing attribution to certain participants (e.g.,

605

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

 Content
 (251, 100%)

 Completeness
 (157, 62.55%)

 Missing
 (133, 52.99%)

 Missing Breaking Changes (31, 12.35%)

 Missing Links (18, 7.17%)

 Missing New Features (16, 6.37%)

 Missing Dependency/Environment Specification
 (13, 5.18%)

 Missing Migration/Usage Instruction (11, 4.38%)

 Missing Version Information (11, 4.38%)

 Missing Attribution (7, 2.79%)

 Missing Known Issues (7, 2.79%)

 Missing Security Changes (4, 1.59%)

 Missing Enhancement (3, 1.20%)

 Missing Visualization (3, 1.20%)

 Missing Dependency/Environment Changes (2, 0.80%)

 Missing Documentation Changes
 (2, 0.80%)

 Missing Misc Changes (2, 0.80%)

 Missing Fixed Bugs (1, 0.40%)

 Missing License Changes (1, 0.40%)

 Missing Modified Files (1, 0.40%)

 Insufficient
 (21, 8.37%)

 Insufficient New Feature Explanation (6, 2.39%)

 Insufficient Breaking Changes Explanation (5, 1.99%)

 Insufficient Migration/Usage Instructions (3, 1.20%)

 Insufficient Fixed Bug Explanation (2, 0.80%)

 Insufficient Configuration Changes (1, 0.40%)

 Insufficient Dependency/Environment Specification
 (1, 0.40%)

 Insufficient Enhancement (1, 0.40%)

 Insufficient Security Explanation (1, 0.40%)

 Correctness
 (94, 37.45%)

 Wrong/Broken Links (48, 19.12%)

 Wrong Version Information (14, 5.58%)

 Wrong Dependency/Environment Specification (7, 2.79%)

 Wrong Identifier (7, 2.79%)

 Wrong Code Examples (5, 1.99%)

 Unimplemented Changes (3, 1.20%)

 Wrong Breaking Changes (3, 1.20%)

 Wrong Migration/Usage Instruction (3, 1.20%)

 Wrong Attribution (2, 0.80%)

 Wrong Configuration Explanation (1, 0.40%)

 Wrong Dependency/Environment Changes (1, 0.40%)

 Unwanted
 (3, 1.20%)

 Unwanted Misc Changes (2, 0.80%)

 Unwanted Repository Badges (1, 0.40%)

 Presentation
 (81, 100%)

 Usability
 (56, 69.14%)

 Poor Layout
 (31, 38.27%)

 Section Reorganization
 Required (22, 27.16%)

 Folding Required
 (6, 7.41%)

 Markup Required
 (3, 3.70%)

 Poor Formatting
 (25, 30.86%)

 Typesetting (18, 22.22%)

 Date Formatting (7, 8.64%)

 Readability
 (25, 30.86%)

 Spelling Errors (14, 17.28%)

 Bad Writing Style (5, 6.17%)

 Grammar Errors (5, 6.17%)

 Multilingual Support Required (1, 1.23%)

 Accessibility
 (173, 100%)

 Limited Exposure (115, 66.47%)

 Wrong/Broken Link to RNs (36, 20.81%)

 Lack Notification (22, 12.72%)

 Production
 (475, 100%)

 Automation
 (217, 45.68%)

 Request for Automation (118, 24.84%)

 Request for Enhancement (37, 7.79%)

 Errors Induced by Automation
 (36, 7.58%)

 Improper Tool Configuration
 (26, 5.47%)

 Planning
 (191, 40.21%)

 When to Produce
 (103, 21.68%)

 Absence (93, 19.58%)

 Deadline Required
 (10, 2.11%)

 Whether to Produce
 (58, 12.21%)

 Where to Produce
 (29, 6.11%)

 Who to Produce
 (1, 0.21%)

 Regulation
 (67, 14.11%)

 PR/Issue/Commit
 Management
 (40, 8.42%)

 Inconsistency
 (16, 3.37%)

 With other RNs in
 Different Places (8, 1.68%)

 With other Documents
 within Project (6, 1.26%)

 With other Documents in
 Different Projects

 (2, 0.42%)

 Workflow
 (11, 2.32%)

 Request for a Workflow
 (9, 1.89%)

 File Naming (1, 0.21%)

 Repository Permission
 Control (1, 0.21%)

Figure 1: The Taxonomy of Release Note Issues. () Represents Dimensions, () Represents Categories, () Represents

Subcategories, and () Represents Leaf Nodes.

contributors, funders, commenters, reviewers, etc.). As stated by

a maintainer of coq, in open source software, it is very important

to give credit [67].

Known Issues (7, 2.79%): Several issues mention that specific

unsolved issues should be included in RNs to alert end users, e.g.,

including a NullPointerException crash and its workaround in

the corresponding RN of NuGet [36].

Other kinds of information may also be reported as missing, though

less frequently, including notification of security changes, enhance-

ments, visualization (additional diagrams or plots), documentation

changes, fixed bugs, license changes, modified files, etc.

Issues in the Insufficient (21, 8.37%) subcategory arise because

certain information related to important changes is not sufficiently

detailed for users to understand. Two kinds of explanations are

most likely to be insufficient in RNs:

New Feature Explanation (6, 2.39%): Developers tend to ask for

more information about unfamiliar new features if they intend

to use them after upgrading. For example, Keras 2.0 renames

samples_per_epoch to steps_per_epoch in fit_generator() but

its RN fails to mention additional changes in parameter seman-

tics, which confuses downstream developers [19].

Breaking Change Explanation (5, 1.99%): Developers also ask for

more clarification about changes that may break downstream

code. We observe a vivid example in numpy where a developer

opens an issue to argue that we should try to improve the release

notes (and probably warnings) for the np.int and other python

alias deprecations [26].

Other insufficiently explained information include: migration/usage

instructions, fixed bugs, configuration changes, dependency/envi-

ronment specification, enhancements, and security.

Interestingly, three issues care about Unwanted information

in RNs, but they are likely to be only occasional. Two issues state

that only critical/developer-impacting changes should go in release

notes instead of listing all miscellaneous changes [28], while the

other issue [44] mentions that repository badges should not occur

in release notes.

606

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

4.1.2 Correctness (94, 37.45%). This category means that informa-

tion described in RNs conveys inaccurate information.

Contrary to our intuition, the majority isWrong/Broken Links

(48, 19.12%), which refers to cases where links in RNs cannot be

opened or direct to an incorrect page. Most links should point to

other kinds of documentation, e.g., user guide, for the elaboration

of changes in RNs; others are expected to point to related PR/issue/-

commit, project main branch, the homepage of other projects, RNs

of sibling projects, files for download, etc. These links are supposed

to supplement information, but they tend to deteriorate over time,

which causes poor reading experience for RN readers.

Moreover, 14 issues are related toWrong Version Information

(14, 5.58%), including version number/name, version date, check-

sum, and most of which are caused by copy-pasting from previ-

ous RNs [22, 51, 75]. Other kinds of change descriptions that can

go wrong include identifier, dependency/environment specifica-

tion, code examples, breaking changes, migration/usage instruc-

tions, unimplemented changes, attribution, dependency/environ-

ment changes, explanation of configuration, etc.

Summary for Content:

Nearly two-thirds (62.55%) of issues within this dimension

concerns Completeness, while only about one-third (37.45%)

concerns Correctness. Developers are most likely to 1) report

wrong/broken links in RNs (19.12%), which annoyingly pre-

vent them from accessing supplementary information, and 2)

missing breaking changes (12.35%), which may mislead users

and incur severe consequences after upgrading (e.g., crash).

4.2 Presentation

81 issues are related to Presentation, with two categories: Read-

ability and Usability. Issues from the Presentation dimension help

reveal how information should be organized, formatted, highlighted,

visualized, and phrased in an RN, so that different RN users can

make use of the RN for their purposes with maximum efficiency.

4.2.1 Usability (56, 69.14%). This category refers to the degree to

which users can use RNs to achieve their objectives effectively.

More than half of the issues (31, 38.27%) in this category are

related to Poor Layout, which means the changes are not clearly

organized in RNs. Since different stakeholders may be interested in

different kinds of information, RNs need to have a proper layout for

them to quickly locate the information they want [97, 102]. On the

other hand, poorly organized RNs may increase the time needed

for users to grab valuable information, annoy readers [34], bury

good features [80], and cause important changes to be missed by

impacted users. For example, Electron lists two API deprecations

under the “other” section in the v12.0.0 RN by mistake, which

makes the deprecations easily overlooked [41]. Developers make

the following suggestions in these issues for improving RN layout:

Section Reorganization (22, 27.16%): Reorganize changes into a

separate section if they are concerned by a specific audience,

e.g., a separate section for database operators in the RNs of

CockroachDB [61].

Folding (6, 7.41%): Shorten RNs and fold a lengthy list of details,

using detail/summary tags provided by GitHub Release Page [64],

HTML, or Markdown features [34].

Markup (3, 3.70%): Usemarkups (e.g., icons or emojis) to highlight

breaking changes.

Other issues arise from Poor Formatting (25, 30.86%):

Typesetting (18, 22.22%): Most of these issues are caused by mis-

using syntax of markup languages (e.g., HTML) and usually lead

to abnormal display, e.g., failing to display list due to missing

HTML linebreaks [65].

Date Formatting (7, 8.64%): Some date formats can cause ambigu-

ities to people in different geographical regions [31].

4.2.2 Readability (25, 30.86%). This category of issues concerns

whether the RN is easy to read, including three subcategories:

Spelling Errors (14, 17.28%), Grammar Errors (5, 6.17%), Bad Writing

Style (5, 6.17%), and Multilingual Support Required (1, 1.23%). Al-

though fixing grammar errors and spelling errors are easy, they

may be hard to notice, especially for technical terms (e.g., MACs

and Macs [45]). Also, certain writing style can make RNs clearer

and more easily understandable, such as describing what happens

after a bug is fixed instead of what used to happen [27]. One issue

asks for multilingual support which helps more users understand

RNs and enables product adaptation to a broader market [35].

Summary for Presentation:

The majority of issues (69.14%) within this dimension con-

cerns Usability, especially poor layout, which may bury im-

portant information and lead to end users’ misjudgement.

Developers propose various solutions to alleviate this prob-

lem, including section reorganization (27.16%), folding (7.41%),

and use of markups (3.70%). Other presentation issues concern

Readability (30.86%), such as spelling, writing style, etc.

4.3 Accessibility

173 issues are related to Accessibility, i.e., how to make RNs acces-

sible to a broad audience, with three categories: Limited Exposure,

Wrong/Broken Link to RNs, and Lack Notification. Issues in this di-

mension thus reveal how a software project should distribute their

RNs, maintain links, and notify their users.

4.3.1 Limited Exposure (115, 66.47%). Issues under this subcategory

express either difficulty in finding RNs or expectation of more

available ways to access RNs. The former case happens when RNs

are placed in obscure locations, e.g., files with an unconventional

name or in a deeply nested directory [63]. In the latter case, users

suggest various locations to show RNs, e.g., Can we get a page which

explains the features and the release numbers in each of the releases

of Teams Clients? If you have one, we can not find it [18].

4.3.2 Wrong/Broken Link to RNs (36, 20.81%). Missing Links and

Wrong/Broken Links under the Content dimension describe cases

where links in RNs are broken or wrong (see Section 4.1.1 and

Section 4.1.2). In addition, many issues report that external links

that suppose to point to RNs themselves (in project website, etc.)

may be broken. For example:

(1) The section of the front page of this repo “Links to release notes”

is full of dead links [29].

(2) Links to the Agent release notes from the APM docs left nav are

returning 404s [69].

607

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

4.3.3 Lack Notification (22, 12.72%). The concerns expressed by

these issues are twofold: 1) whether a certain medium should be

adopted to notify users and publicize RNs, and 2) whether current

ways of notification should be improved. For example, several issues

mention the use of RSS feeds to notify new releases. In another

case, a user complains: Currently, the release notes for an updated

version only show after the new version is installed. Basically, it is

preferable to know in advance what changes are made to the app

before its downloaded and installed [17].

For improving RN accessibility, developers in our studied issues

suggest the following locations for putting RNs:

GitHub Release Pages: GitHub provides a dedicated page to dis-

play the release history. Many issues show that developers often

check GitHub Release Pages first when searching for RNs be-

cause they consider GitHub Release Pages as the most intuitive

location for releases and RNs. As stated by a developer: From

an engineering point of view, having release notes published on

GitHub is ideal, this is our source of truth [33].

Project Websites: Developers also expect project websites as RN

management centers providing links to RNs for each release. De-

velopers also suggest using a specific URL for the latest RN [37].

Files in Repositories: Some developers think that a RN file in the

repository (the root directory or the doc/ folder) is more im-

portant than storing RNs on GitHub Release Page [30]. A RN

file in repository makes the repository more self-contained (not

depending on GitHub) and allows the usage of collaborative

editing tools like Git [72]. The OpenStack community also re-

quires that its projects must include RN files to record version

changes and believe that this way can work on multiple patches

simultaneously and reduce merge conflicts [93].

Apps: Application software can provide buttons and links to

access the latest RN, e.g., an ‘about’ button [72]. RN notifications

can also be displayed when a new version is released [46].

Instant Messaging Channels: Such channels can be used to imme-

diately deliver new RNs to subscribed end users, e.g., Slack [50]

and Telegram [56].

Summary for Accessibility:

Users encounter a diverse range of difficulties in accessing

RNs, including Limited Exposure (66.47%),Wrong/Broken Links

to RNs (20.81%), and Lack of Notification (12.72%).

4.4 Production

475 issues fall into the Production dimension, i.e., in what way RNs

should be produced. Problems behind these issues can shed light on

prospective automation approaches, improvement of existing tools,

and design of better release processes. This dimension consists of

three categories: Automation, Planning, and Regulation.

4.4.1 Automation (217, 45.68%). This category reflects four kinds

of issues that developers frequently encounter on automated RN

generation: Request for Automation (118, 24.84%), Request for En-

hancement (37, 7.79%), Error Induced by Automation (36, 7.58%), and

Improper Tool Configuration (26, 5.47%).

Request for Automation (118, 24.84%): More than half of is-

sues in the Automation category are opened for discussing whether

some sort of automation should be used and what specific tools

to adopt for managing and generating RNs. As stated by a devel-

oper from spid-compliant-certificates-python: Despite important,

writing release notes is a very boring task...It would be nice to have

them automatically generated every time a PR is merged [7]. De-

velopers propose two main types of solutions for automation: 1)

writing project-specific scripts to fill predefined templates and pub-

lish releases (e.g., [8]), and 2) adopting existing automated tools

such as Semantic Release [95], github-changelog-generator [14],

Release It [91], and Release Drafter [90]. Although RN automation

is a huge help in reducing manual toil, some developers express

their concerns for full automation in their projects. They think that

an automated workflow: 1) requires prefixes or labels for classify-

ing commits or PRs, which may burden the code review and CI

complexity; 2) is not suitable for important versions, e.g., stable

releases, which need manual editing for better readability.

Request for Enhancement (37, 7.79%): These issues reveal sug-

gested improvement of automated generation tools and scripts

by users. Specifically, users mostly request for three kinds of sup-

port: 1) automated generation of RNs for different branches [70]; 2)

automated retrieval of related information from multiple reposito-

ries [23]; 3) automated supplement of details, e.g., CVEs [24], attribu-

tion [73], and PR comments [40]. There are also some specific needs

from various scenarios. For example, a member of CockroachDB pro-

poses an extension to the RN extraction script to support the amend-

ment of past RNs with new commits [94]. Another issue opened

by a contributor of chef/automate, reveals the limited support of

combining multiple RNs when upgrading across multiple versions

and asks for further improvement [82]. Some developers suggest

current tools to also add support to automate RN publishing.

Errors Induced by Automation (36, 7.58%): These issues report

defects of automated tools and scripts, which are diverse and largely

tool/project-specific. There are two types of issues: one is that these

defects lead to unexpected RNs, e.g, wrong/missing content [60],

repetition [88], and incorrect positions [68]; the other one is that

these defects affect the generation process failure, e.g., not generat-

ing RNs that exceed certain length [6, 62]. Among these issues, most

of them are caused by defects of current tools rather than project-

specific scripts. Besides, these tools all have to fetch changes history

from Git and several issues are caused by its complex mechanisms,

such as branch control [48], rebase [49] and release tag [32], which

developers need to pay more attention to in design.

Improper Tool Configuration (26, 5.47%): These issues usually

arise from unfamiliarity with the tools, such as generating RNs

without a template or by a wrong template. Most of these issues are

caused by misconfigured change scopes, e.g., the expected branch,

version ranges [43], certain types of changes [16], and triggered

conditions [86]. Besides, parameter misconfiguration is another

common cause, including the construction of paths [79], repository

names [85], environment variables [42], etc.

4.4.2 Planning (191, 40.21%). This category of issues has four sub-

categories:When to Produce (103, 21.68%),Whether to Produce (58,

12.21%),Where to Produce (29, 6.11%), andWho to Produce (1, 0.21%).

When to Produce (103, 21.68%): Developers discuss two kinds

of issues in this subcategory, Absence and Deadline Required.

In the former case of Absence (93, 19.58%), projects do not pro-

vide RNs for all releases (i.e., some releases are missing RNs),

608

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

which causes their users to open inquiry issues. For example, the

absence of RN for Recoil confuses a user who says: I saw that

version 0.1.3 has been published on npm, but I cannot find release

notes anywhere, would be good to know about potential breaking

changes, deprecations and new additions [77]. Besides, although

most projects provide RNs for every version, some of them are

released too late to be helpful which disappoints users [58].

In the latter case of Deadline Required (10, 2.11%), developers

discuss how to produce RNs timely, e.g., update RNs before a

new version is released [25], give a deadline for the RN [54], and

announce the adoption of a formal release cycle [81].

Whether to Produce (58, 12.21%): This subcategory discusses

the necessity of providing RNs. Some projects never provide RNs for

informing changes in the new release. Consequently, in some cases,

users open issues because the lack of RNs directly leads to upgrade

failures and frustration [39]. They have to resort to various effort-

prone methods to figure out changes from commit history, e.g.,

using git diff to show all code changes between two versions [71].

Although git log can list all commit messages and ease the pain

of figuring out changes to some extent, as stated by a member of

Common-Workflow-Language, This requires everyone to write the best

possible git commit message and have very clean git histories. While

people are capable of this, it is more work for contributors [52]. In

other cases, internal developers open such issues as they notice

RNs would help developers to precisely see what notable changes have

been made between each release of the project [52]. However, not

everyone agrees with providing a RN with each release, because

they think the changes are only internal or too minor to be worth

mentioning [59, 74]. Other project maintainers acknowledge the

necessity of RNs but they lack time for them [55].

Different fromAccessibility issues, issues in theWhere to Pro-

duce (29, 6.11%) subcategory concern where to collaboratively edit

and store RN files. Although GitHub provides convenient release

functionalities [3] to help developers manage RNs, it currently does

not support collaborative RN editing. By contrast, many projects

with a large team wish to distribute RN workload among team

members so that RNs can be scalably produced. As a result, most

projects opt for adding RNs as files in the git repository so that

multiple developers can be involved in RN production (e.g., [30]).

One special case mentions the lack of accountability in RN

production and suggests someone should be responsible for it [57].

4.4.3 Regulation (67, 14.11%). This category of issues refers to what

regulations should be followed to simplify and ease the production

of RNs. It covers three subcategories: PR/Issue/Commit Management

(40, 8.42%), Inconsistency (16, 3.37%), andWorkflow (11, 2.32%).

PR/Issue/Commit Management (40, 8.42%): This subcategory

refers to issues discussing how to efficiently prepare (relevant)

PRs, issues, and commits for RNs. This procedure is usually time-

consuming, especially for large projects. For example, a member

from pytorch/vision complains that I wrote the release notes last

week and we spent the vast majority of the time labeling the PRs and

suggests it’d be good to have a process that wouldmake this faster [53].

Some solutions emerge from the discussions in these issues. For

commits, developers prefer to adopt a convention for writing struc-

tured commit messages (e.g., Conventional Commits [9]), so that

changes (e.g, features, fixes, and breaking changes) in a commit can

be documented in a machine-parsable way. For PRs, several large

projects recommend labeling each PR with pre-defined labels. In

the case of pytorch/vision, developers reach a consensus on cate-

gorizing each PR with labels describing affected components and

changed types (e.g., breaking changes and improvements) [53]. For

issues, many developers mention the use of GitHub milestones [2]

for progress tracking. Some projects create each milestone using

version numbers and group issues into milestones [78], which re-

duces the scope of review when developers write RNs.

Inconsistency (16, 3.37%): This subcategory refers to issues

about inconsistencies between 1) RNs published in different places,

2) RNs and other documentation within project, and 3) RNs and

documentation in other projects. As revealed in the Accessibility

dimension, RNs are usually published in different places including,

GitHub Release Page, project homepage, etc. However, developers

sometimes neglect to maintain their consistency. For example, a

user suggests that It’d be great to have a way to sync release notes

in docs.newrelic.com by fetching the information from GitHub [33].

RNs can also easily become inconsistent with other documentation

within project, e.g., usage guides and READMEs. As an example

of inconsistency between RNs and usage guides, a user complains

that our documentation is horribly outdated and calls for internal

developers to go through all release notes and move all information

that is not outdated and is missing from the documentation to the

usage guide [38]. Finally, RNs sometimes need to include changes

or attribution information from closely related projects, which

requires collaboration of developers from the related projects.

Workflow (11, 2.32%): This subcategory refers to issues dis-

cussing formulation of RN production workflow or improvement on

existing workflow. Among the issues, nine are opened as a Request

for aWorkflow. For example, a developer from mantid/mantidimaging

formulates a workflow as follows: Release notes should be continu-

ously updated during development. Almost all pull requests should

have an update to the relevant file and section in docs/release_notes.

If the next release name is not yet chosen, this will be next.rts, and

renamed closer to release. When fixes are backported to a release

branch, they can be added to the notes for that release, in an updates

section [87]. One issue discusses File Naming and suggests avoiding

confusing RN naming format [20]. Another issue discusses Reposi-

tory Permission Control where developers in kubernetes/test-infra

request to have the permission to collaboratively edit RNs. This

project only allows very few members to have write access to RNs,

causing others to ping someone with write access or the author of the

parent PR to add the release note to the PR body [76].

Summary for Production:

Developers show a strong interest in Automation (45.68% of is-

sues within this dimension), but automated tools/scripts may

lack desired features, tend to induce errors, and are hard or

error-prone to configure. Additionally, without proper Plan-

ning (40.21%), e.g., release schedules and deadlines, users may

be confused about the absence of RNs. Finally, Regulation

(14.11%) of RN production, especially conventions for pull re-

quests (PRs), issues, and commits (8.42%), is vital for enabling

efficient RN production in large software projects.

609

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

5 DISCUSSION

5.1 Implications

5.1.1 Comparison with Previous Work. Since previous works cat-

egorize RN content into different taxonomies [102, 117], it is not

easy to perform a detailed comparison of our results with theirs

(mapping results from different work can be a possibility for future

studies). We can still observe some interesting differences from the

most frequently occurring RN content in different taxonomies (Ta-

ble 3): 1) breaking changes and links are more likely to have issues

but they are not listed as a major category in previous taxonomies;

2) new features and bug fixes are not likely to have issues even if

they occur most frequently in previous taxonomies; 3) some infor-

mation frequently desired by users are not mentioned in previous

work, such as migration/usage instructions, code examples, and

dependency specifications. Our lens of observation sheds light on

the most fragile parts of RNs untouched in previous taxonomies.

The taxonomy in our paper also extends thework of Bi et al. [102]

with a significant amount of new empirical evidence and actionable

implications. For example, they find in RQ2.2 that clear structure

and thewriting styles of release note documentation are vital.We go

one step further and identify concrete evidence on how structure

and style impact users, which we further derive into actionable

advice on how to write and organize RNs.

5.1.2 A Checklist for RN Production. Based on the results summa-

rized in Section 4, we provide a checklist as follows.

� What Should be Included in RNs? We find that issues related to

RNContent (Section 4.1) have different distribution compared with

the most frequent RN content identified in previous works [97, 102,

117], which indicates that some types of information are more likely

to be missed or incorrect than others. Therefore, we recommend RN

producers to check whether the following eight kinds of changes

have been described in RNs: 1) Breaking Changes, 2) New Features,

3) Enhancements, 4) Fixed Bugs, 5) Documentation Changes, 6)

Dependency/Environment Changes, 7) Security Changes, and 8)

License Changes.We also find that additional information that bene-

fits better understanding and tracking of these changes, e.g., links to

corresponding PRs/issues/commits, is preferred by users. We there-

fore recommend including, where necessary, the following eight

kinds of explanatory information in RNs: 1) Links to Change-Related

PRs, Issues, and Commits, 2) Guides (e.g., upgrade, migration, or

setup guides), 3) Code Examples, 4) Dependency/Environment Spec-

ification, 5) Attributions (e.g., authors, reviewers, commenters, etc.),

6) Explanation for Jargon-Heavy Descriptions, 7) Versioning Infor-

mation (e.g., release time, version name/number, setup package,

etc), and 8) Known Issues.

� How to Ensure RNs’ Completeness? Our results from Section 4.1

show that RNs are more frequently affected by Completeness issues

than Correctness ones, e.g., missing breaking changes, which indi-

cates the importance of ensuring completeness in RN production.

Thus, applying completeness checks on RNs, i.e., making sure all

critical changes are listed, is strongly recommended. However, our

investigations reveal two main reasons for completeness issues: 1)

lacking manpower or time to conduct thorough inspections; 2) dif-

ficult for a limited number of developers to understand all changes

between versions. While automated tools for checking RN com-

pleteness are still lacking, we locate several practices suggested by

issue participants that may make RNs more likely to be complete

and reduce the pressure to review changes:

For each change description in RNs, add links to the correspond-

ing PR, issue, commit, or external resources (e.g., CVE) so that

its completeness can be easily checked.

Adopt a systematic and structured way to label and organize

changes (i.e., PRs/commits/issues), as discussed in Section 4.4.3.

Distribute workload among all contributors instead of having a

central responsible person for creating RNs. For example, some

projects require that each PR should contain a release notes

section in the PR body that describes the affected submodule

name and a list of changes for that submodule [96].

� How Should RNs be Organized? The issues related to Presenta-
tion indicate that layout indeed greatly influences RN reading expe-

rience, as mentioned by Bi et al. [102]. An analogy is the relationship

between content and directory: if the content is misplaced or not

indexed, it is easy to miss the content you are interested in [41, 80].

From these issues and their related RNs, we find that several hier-

archical structures can be used to separate changes into categories

and better organize RNs. Based on results in Section 4.2.1, we rec-

ommend two strategies to group changes: 1) by type of change

(e.g., new features, fixed bugs, breaking changes); 2) by affected

component (e.g., the network module). The two strategies can be

combined (e.g., first by component and then by type of change). We

also recommend putting the most important changes (e.g., break-

ing changes, major new features) on top. After an organization is

determined, we further recommend using proper visualization and

fold lengthy lists for highlighting important changes.

� How to Choose Writing Style for RNs? When investigating

issues under Bad Writing Style, a case attracts our attention, i.e., RN

should be funny and cryptic in app stores to attract non-technical end

users but concise and clear on GitHub to deliver information efficiently.

Because the requirements of users differ from these of internal

developers, we recommend projects to provide different RNs in

different writing styles to serve different audiences (stakeholders).

For example, Apache Camel provides two types of RNs: one is more

generalized and summarized [5] intended for the end users, while

the other is a list of all issues that have been resolved under this

update intended for someone who needs technical details [89].

� How to Make RNs (More) Accessible? This problem involves

not only how users can access RN quickly (Limited Exposure and

Lack Notification), but also where producers should collaboratively

edit and store RNs (Where to Produce). It can be relieved through

some more diverse ways for notification and access. As summarized

in Section 4.3, we recommend developers to consider publicizing

RNs in the following locations, if applicable, to make their RNs

more accessible: GitHub Release Pages, Project Websites, Files in

Repositories, Apps, and Instant Messaging Channels.

� Link Check.We find many issues related to links, e.g., Missing

Links andWrong Links under Content, andWrong/Broken Links to

RNs under Accessibility. Broken or wrong links often make users

unpleasant and increase their cost of searching. A developer from

mantidproject/mantid mentions that they need to go over release

and check links work before releasing [47]. Checking invalid links

regularly in RN can mitigate this problem, that can be achieved

by some tools, e.g., Xenu Link Sleuth [11] and HTML Link Val-

idator [15]. Besides, providing absolute path instead of relative

610

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

Table 3: Comparison of Most Frequent RN Content in Different Taxonomies.

Moreno et al. [117] Bi et al. [102] Ours (Completeness)∗ Ours (Correctness)∗

Fixed Bugs (90%) Issues Fixed (79.3%) Breaking Changes (22.93%) Links (51.06%)

New Features (46%) New Features (55.1%) New Features (14.01%) Version Information (14.89%)

New Code Components (43%) System Internal Changes (25.1%) Links (11.46%) Dependency Specifications (7.45%)

Modified Features (26%) Non-functional Requirements (10.3%) Dependency Specifications (8.92%) Identifiers (7.45%)

Refactoring Operations (21%) Documentation Updates (9.5%) Migration/Usage Instructions (8.92%) Code Examples (5.32%)

∗ The percentages here are different from Figure 1 because the denominators are the total number of issues in the Completeness (157 issues) and the Correctness (94
issues) category, respectively. In the Completeness column, issues from Missing andInsufficient are merged.

path [83] can reduce potential broken risks, no matter in RNs or in

other documents containing links to RNs, e.g., READMEs.

5.1.3 Automating RN Production. Apart from the tool-specific prob-

lems in Section 4.4, we further summarize the following research

directions that may greatly help automated RN generation:

� Automated Labeling of Software Changes: Our results in Sec-

tion 4.4.1 show that many developers request for tools to automate

RN production. However, to the best of our knowledge, existing

tools have strong constraints on input. Some well-known tools,

e.g., github-activity and Release Drafter, require a compatible PR

label system. Semantic-Release requires developers to write commit

messages following a specific rule, i.e., Angular Commit Message

Conventions, requiring developers to specify which category a com-

mit belongs to manually. These preconditions limit their application

scope, and the whole project needs to change its production process

to adapt to it [84]. Techniques for automated commit/PR classifica-

tion, which we consider as a promising direction, can alleviate this

problem. Existing commit classification methods (e.g., [106, 115])

mainly focus on classifying commits into three maintenance cate-

gories (i.e., corrective, adaptive, and perfective) proposed by Swan-

son [122], which is not suitable for RN generation. Therefore, clas-

sifying commits into categories suitable for RN generation (e.g.,

the eight kinds of changes proposed in Section 5.1.2) is needed to

facilitate automated RN generation. Similar discrepancies also exist

for works on PR classification [112, 128].

� Automated Summarization and Language Style Unification: As

reflected in Section 4.2, a fluent and unified writing style is vital to

RN Readability. However, existing tools generate RNs by integrating

existing text, e.g., PR titles and commit messages, which not only

violates RNs’ fundamental principle (it should focus on the impact

for the user and make that understandable [92]), but also offloads the

quality responsibility to developers writing other development text.

This often leads to poor readability of the final generated RNs. With

advances in natural language preprocessing (NLP) tasks like text

summarization [105] and style transfer [125], it will be interesting

to explore approaches that summarize existing development text

and unify language style for automated RN generation.

� Automated Testing of RNs: As shown in Section 4.1, Complete-

ness and Correctness are the key to a high quality RN. Although we

synthesize a checklist of practices during the process of RN produc-

tion, these largely manual practices are hardly a strong guarantee

for reducing the risk of incompleteness or incorrectness. To the

best of our knowledge, there is still no tool designed for testing (i.e.,

inconsistency checking) of RNs. Challenges for facilitating such

testing may include: 1) checking the consistency between natural

language description and software changes; and 2) checking the

consistency between documentation from different sources (e.g.,

RNs and usage guides, Section 4.4.3). Similar works for, e.g., check-

ing code comment inconsistency [123, 129], may be a good starting

port for exploring the possibility of such a tool. Furthermore, since

users perceive breaking changes as important but frequently miss-

ing in RNs (Section 4.1.1), works on breaking change and update

incompatibility detection [114] should also be important.

5.2 Threats to Validity

5.2.1 Internal Validity. Our taxonomy construction is based en-

tirely on manual analysis, which may introduce subjectivity and

labeling errors. To mitigate these threats, we include two inspectors

and one arbitrator into the process, all with rich development ex-

perience. To ensure the quality of taxonomy, we conduct multiple

iterative rounds to refine the taxonomy and incorporates feedback

from real developers. We also measure inter-rater reliability to

ensure that the taxonomy is precisely defined and reproducible.

5.2.2 External Validity. Our work only uses issues from GitHub

projects for categorizing RN issues, which means that our results

may not be generalized to another context (e.g., industry projects).

Since GitHub is a huge and diverse coding platform and the projects

involved in our analysis are of high quality, we believe our results

reveal valuable insights and practical challenges in RN production

and usage. To further confirm our belief, we invite three industry

developers to validate whether our taxonomy can cover the RN

issues they have encountered. However, the limited number of

developers also poses a threat, which we find it hard to mitigate

because it is not easy to locate industry developers experiencedwith

RNs. Future work may be able to gain different insights through

other data sources or interviews/surveys on a larger scale.

Another threat to external validity comes from using only issues

with keyword “release note” in their titles. Many issues may still

discuss RNs even if they do not have the keyword in their titles. The

threat can be mitigated by the size of our dataset that is comparable

to and even larger than existing studies [99, 101, 103, 124, 130].

6 CONCLUSION

In this paper, we have presented a taxonomy of real-world RN

issues summarized from GitHub. Our taxonomy not only distills a

practitioner-oriented checklist for release note production, but also

lays out an empirical foundation for several interesting research

directions for release note automation. As future work, we plan

to investigate such opportunities for integrating novel automation

approaches with existing release note workflows.

Acknowledgments. This work is supported by the National Key

R&D Program of China Grant 2018YFB1004201 and the National

Natural Science Foundation of China Grant 61825201.

611

Demystifying Software Release Note Issues on GitHub ICPC ’22, May 16–17, 2022, Virtual Event, USA

REFERENCES
[1] 2021. About issues - GitHub Docs. https://docs.github.com/en/issues/tracking-

your-work-with-issues/about-issues.
[2] 2021. About milestones - GitHub Docs. https://docs.github.com/en/issues/using-

labels-and-milestones-to-track-work/about-milestones.
[3] 2021. About releases - GitHub Docs. https://docs.github.com/en/repositories/

releasing-projects-on-github/about-releases.
[4] 2021. angular.js/DEVELOPERS.md at master · angular/angular.js. https://github.

com/angular/angular.js/blob/master/DEVELOPERS.md#commits.
[5] 2021. Apache Camel 3.11 What’s New - Apache Camel. https://camel.apache.

org/blog/2021/06/Camel311-Whatsnew/.
[6] 2021. AppCenterDistributeV3 should truncate release notes. https://github.com/

microsoft/azure-pipelines-tasks/issues/11922.
[7] 2021. Auto generate release notes. https://github.com/italia/spid-compliant-

certificates-python/issues/6.
[8] 2021. Automate release notes. https://github.com/eclipse/rdf4j/issues/2784.
[9] 2021. Conventional Commits. https://www.conventionalcommits.org/.
[10] 2021. Convergence Q&A: The Answer is in Black and White | Security Info

Watch. https://www.securityinfowatch.com/cybersecurity/article/10840073/the-
importance-of-release-notes.

[11] 2021. Find broken links on your site with Xenu’s Link Sleuth (TM). https:
//home.snafu.de/tilman/xenulink.html.

[12] 2021. The Firefox release notes process - MozillaWiki. https://wiki.mozilla.org/
Release_Management/Release_Notes.

[13] 2021. GH Archive. https://www.gharchive.org/.
[14] 2021. github-changelog-generator. https://github.com/github-changelog-

generator/github-changelog-generator.
[15] 2021. HTML Link Validator - Download. https://html-link-validator.en.softonic.

com/.
[16] 2021. Issue #103 of PSBicep/PSBicep. https://github.com/PSBicep/PSBicep/

issues/103.
[17] 2021. Issue #1097 of sublimehq/sublime_merge. https://github.com/sublimehq/

sublime_merge/issues/1097.
[18] 2021. Issue #1123 of dotnet/SqlClient. https://github.com/dotnet/SqlClient/

issues/1123.
[19] 2021. Issue #11517 of keras-team/keras. https://github.com/keras-team/keras/

issues/11517.
[20] 2021. Issue #1255 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/1255.
[21] 2021. Issue #1271 of cesanta/mongoose. https://github.com/cesanta/mongoose/

issues/1271.
[22] 2021. Issue #12961 of babel/babel. https://github.com/babel/babel/issues/12961.
[23] 2021. Issue #131 of rfennell/ReleaseNotesAction. https://github.com/rfennell/

ReleaseNotesAction/issues/131.
[24] 2021. Issue #1354 of kubernetes/release. https://github.com/kubernetes/release/

issues/1354.
[25] 2021. Issue #1682 of microsoft/ApplicationInsights-Java. https://github.com/

microsoft/ApplicationInsights-Java/issues/1682.
[26] 2021. Issue #17977 of numpy/numpy. https://github.com/numpy/numpy/issues/

17977.
[27] 2021. Issue #18 of hazelcast/cloud-docs. https://github.com/hazelcast/cloud-

docs/issues/18.
[28] 2021. Issue #1873 of Azure/azure-sdk. https://github.com/Azure/azure-sdk/

issues/1873.
[29] 2021. Issue #194 of HOKGroup/HOK-Revit-Addins. https://github.com/

HOKGroup/HOK-Revit-Addins/issues/194.
[30] 2021. Issue #1966 of decred/dcrwallet. https://github.com/decred/dcrwallet/

issues/1966.
[31] 2021. Issue #1990 of bigcommerce/cornerstone. https://github.com/

bigcommerce/cornerstone/issues/1990.
[32] 2021. Issue #2000 of DataDog/dd-trace-py. https://github.com/DataDog/dd-

trace-py/issues/2000.
[33] 2021. Issue #2127 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/2127.
[34] 2021. Issue #2178 of vaadin/platform. https://github.com/vaadin/platform/

issues/2178.
[35] 2021. Issue #2207 of microsoft/appcenter. https://github.com/microsoft/

appcenter/issues/2207.
[36] 2021. Issue #2410 of NuGet/docs.microsoft.com-nuget. https://github.com/

NuGet/docs.microsoft.com-nuget/issues/2410.
[37] 2021. Issue #2502 of 3drepo/3drepo.io. https://github.com/3drepo/3drepo.io/

issues/2502.
[38] 2021. Issue #2527 of rotki/rotki. https://github.com/rotki/rotki/issues/2527.
[39] 2021. Issue #260 of getsentry/sentry-laravel. https://github.com/getsentry/

sentry-laravel/issues/260.
[40] 2021. Issue #27 of stephend017/snake-charmer. https://github.com/stephend017/

snake-charmer/issues/27.

[41] 2021. Issue #28375 of electron/electron. https://github.com/electron/electron/
issues/28375.

[42] 2021. Issue #29 of waifu-motivator/wmp-env-action. https://github.com/waifu-
motivator/wmp-env-action/issues/29.

[43] 2021. Issue #2907 of meshery/meshery. https://github.com/meshery/meshery/
issues/2907.

[44] 2021. Issue #3 of cwarwicker/moodle-tool_ribbons. https://github.com/
cwarwicker/moodle-tool_ribbons/issues/3.

[45] 2021. Issue #300 of MicrosoftDocs/OfficeDocs-OfficeUpdates. https://github.
com/MicrosoftDocs/OfficeDocs-OfficeUpdates/issues/300.

[46] 2021. Issue #302 of chef/chef-workstation-app. https://github.com/chef/chef-
workstation-app/issues/302.

[47] 2021. Issue #31371 of mantidproject/mantid. https://github.com/mantidproject/
mantid/issues/31371.

[48] 2021. Issue #3145 of BlueWallet/BlueWallet. https://github.com/BlueWallet/
BlueWallet/issues/3145.

[49] 2021. Issue #31816 of istio/istio. https://github.com/istio/istio/issues/31816.
[50] 2021. Issue #3193 of cdr/code-server. https://github.com/cdr/code-server/issues/

3193.
[51] 2021. Issue #3238 of nushell/nushell. https://github.com/nushell/nushell/issues/

3238.
[52] 2021. Issue #328 of common-workflow-language/cwlviewer. https://github.com/

common-workflow-language/cwlviewer/issues/328.
[53] 2021. Issue #3351 of pytorch/vision. https://github.com/pytorch/vision/issues/

3351.
[54] 2021. Issue #376 of USAJOBS-temp/openoppstasks. https://github.com/

USAJOBS-temp/openoppstasks/issues/376.
[55] 2021. Issue #432 of negomi/react-burger-menu. https://github.com/negomi/

react-burger-menu/issues/432.
[56] 2021. Issue #48 of wabarc/wayback. https://github.com/wabarc/wayback/issues/

48.
[57] 2021. Issue #5236 of wellcomecollection/wellcomecollection.org. https://github.

com/wellcomecollection/wellcomecollection.org/issues/5236.
[58] 2021. Issue #533 of hashicorp/terraform-ls. https://github.com/hashicorp/

terraform-ls/issues/533.
[59] 2021. Issue #544 of dask/fastparquet. https://github.com/dask/fastparquet/

issues/544.
[60] 2021. Issue #54752 of saltstack/salt. https://github.com/saltstack/salt/issues/

54752.
[61] 2021. Issue #57898 of cockroachdb/cockroach. https://github.com/cockroachdb/

cockroach/issues/57898.
[62] 2021. Issue #581 of digidem/mapeo-mobile. https://github.com/digidem/mapeo-

mobile/issues/581.
[63] 2021. Issue #59 of hedgedoc/hedgedoc.github.io. https://github.com/hedgedoc/

hedgedoc.github.io/issues/59.
[64] 2021. Issue #5913 of prisma/prisma. https://github.com/prisma/prisma/issues/

5913/#issuecomment-788326709.
[65] 2021. Issue #64 of nathanwoulfe/Plumber-2. https://github.com/nathanwoulfe/

Plumber-2/issues/64.
[66] 2021. Issue #663 from vue-leaflet/Vue2Leaflet. https://github.com/vue-leaflet/

Vue2Leaflet/issues/663.
[67] 2021. Issue #7058 of coq/coq. https://github.com/coq/coq/issues/7058/

#issuecomment-375720879.
[68] 2021. Issue #714 of gitpod-io/gitpod. https://github.com/gitpod-io/gitpod/issues/

714.
[69] 2021. Issue #758 of newrelic/docs-website. https://github.com/newrelic/docs-

website/issues/758.
[70] 2021. Issue #789 of opensearch-project/OpenSearch. https://github.com/

opensearch-project/OpenSearch/issues/789.
[71] 2021. Issue #79 of rayokota/kcache. https://github.com/rayokota/kcache/issues/

79.
[72] 2021. Issue #808 of alteryx/woodwork. https://github.com/alteryx/woodwork/

issues/808.
[73] 2021. Issue #8605 of renovatebot/renovate. https://github.com/renovatebot/

renovate/issues/8605.
[74] 2021. Issue #87 of dtolnay/semver. https://github.com/dtolnay/semver/issues/87.
[75] 2021. Issue #882 of MicrosoftEdge/WebView2Feedback. https://github.com/

MicrosoftEdge/WebView2Feedback/issues/882.
[76] 2021. Issue #9098 of kubernetes/test-infra. https://github.com/kubernetes/test-

infra/issues/9098.
[77] 2021. Issue #916 of facebookexperimental/Recoil. https://github.com/

facebookexperimental/Recoil/issues/916.
[78] 2021. Issue #916 of kubernetes-sigs/multi-tenancy. https://github.com/

kubernetes-sigs/multi-tenancy/issues/916.
[79] 2021. Issue #99 of zammad/zammad-helm. https://github.com/zammad/zammad-

helm/issues/99.).
[80] 2021. Issue #9903 of EOSIO/eos. https://github.com/EOSIO/eos/issues/9903.

612

ICPC ’22, May 16–17, 2022, Virtual Event, USA Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, Minghui Zhou

[81] 2021. Move to a formal release cycle with release notes. https://github.com/
girder/cookiecutter-girder-4/issues/45.

[82] 2021. Provide release note information in a format that supports users not
upgrading from version N to version N+1. https://github.com/chef/automate/
issues/2141.

[83] 2021. Pull Request #1114 of hedgedoc/hedgedoc. https://github.com/hedgedoc/
hedgedoc/pull/1114/files.

[84] 2021. Pull Request #1164 of opentelekomcloud/terraform-provider-
opentelekomcloud. https://github.com/opentelekomcloud/terraform-provider-
opentelekomcloud/pull/1164.

[85] 2021. Pull Request #279 of corgibytes/freshli-lib. https://github.com/corgibytes/
freshli-lib/pull/279/files.

[86] 2021. Pull Request #301 of corgibytes/freshli-lib. https://github.com/corgibytes/
freshli-lib/pull/301/files.

[87] 2021. Pull Request #798 of mantidproject/mantidimaging. https://github.com/
mantidproject/mantidimaging/pull/798/files.

[88] 2021. Pull Request #83 of gohugoio/hugo. https://github.com/gohugoio/hugo/
pull/83.

[89] 2021. Release 3.11.0 - Apache Camel. https://camel.apache.org/releases/release-
3.11.0/.

[90] 2021. Release-Drafter. https://github.com/release-drafter/release-drafter.
[91] 2021. Release It! https://github.com/release-it/release-it.
[92] 2021. Release Management—OpenStack Project Team Guide Documen-

tation. https://docs.openstack.org/project-team-guide/release-management.
html#how-to-add-new-release-notes.

[93] 2021. reno: A New Way to Manage Release Notes — reno 3.4.1.dev1 documenta-
tion. https://docs.openstack.org/reno/latest/.

[94] 2021. scripts/release-notes: make it possible to edit a release note in a different
commit. https://github.com/cockroachdb/cockroach/issues/42163.

[95] 2021. Semantic Release. https://github.com/semantic-release/semantic-release.
[96] 2021. Writing Release Notes ·sympy/sympy Wiki. https://github.com/sympy/

sympy/wiki/Writing-Release-Notes.
[97] Surafel Lemma Abebe, Nasir Ali, and Ahmed E Hassan. 2016. An empirical

study of software release notes. Empirical Software Engineering 21, 3 (2016),
1107–1142. https://doi.org/10.1007/s10664-015-9377-5

[98] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele
Bavota, Michele Lanza, and David C Shepherd. 2020. Software documentation:
the practitioners’ perspective. In 2020 IEEE/ACM 42nd International Conference
on Software Engineering (ICSE). IEEE, 590–601. https://doi.org/10.1145/3377811.
3380405

[99] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-
Vásquez, Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software
documentation issues unveiled. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE). IEEE, 1199–1210. https://doi.org/10.1109/ICSE.
2019.00122

[100] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I Maletic. 2008. What’s a
typical commit? A characterization of open source software repositories. In 2008
16th IEEE International Conference on Program Comprehension. IEEE, 182–191.
https://doi.org/10.1109/ICPC.2008.24

[101] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger.
2018. Automatically classifying posts into question categories on Stack Overflow.
In 2018 IEEE/ACM 26th International Conference on Program Comprehension
(ICPC). IEEE, 211–21110. https://doi.org/10.1145/3196321.3196333

[102] Tingting Bi, Xin Xia, David Lo, John Grundy, and Thomas Zimmermann. 2020.
An empirical study of release note production and usage in practice. IEEE
Transactions on Software Engineering (2020). https://doi.org/10.1109/TSE.2020.
3038881

[103] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu Wang, Tao Xie, and Xu-
anzhe Liu. 2020. A comprehensive study on challenges in deploying deep
learning based software. In Proceedings of the 28th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 750–762. https://doi.org/10.1145/3368089.3409759

[104] Roberta Coelho, Lucas Almeida, Georgios Gousios, and Arie Van Deursen. 2015.
Unveiling exception handling bug hazards in android based on GitHub and
Google code issues. In 2015 IEEE/ACM 12th Working Conference on Mining
Software Repositories. IEEE, 134–145. https://doi.org/10.1109/MSR.2015.20

[105] Wafaa S El-Kassas, Cherif R Salama, Ahmed A Rafea, and Hoda K Mohamed.
2021. Automatic text summarization: A comprehensive survey. Expert Systems
with Applications 165 (2021), 113679. https://doi.org/10.1016/j.eswa.2020.113679

[106] Lobna Ghadhab, Ilyes Jenhani, Mohamed Wiem Mkaouer, and Montassar Ben
Messaoud. 2021. Augmenting commit classification by using fine-grained source
code changes and a pre-trained deep neural language model. Information and
Software Technology 135 (2021), 106566. https://doi.org/10.1016/j.infsof.2021.
106566

[107] Hao He, Runzhi He, Haiqiao Gu, and Minghui Zhou. 2021. A large-scale em-
pirical study on Java library migrations: prevalence, trends, and rationales. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 478–490.

[108] F W Holloway. 1985. Praxis release notes, Versions 7. 4 and 7. 5. (9 1985).
https://www.osti.gov/biblio/5141606

[109] Siw Elisabeth Hove and Bente Anda. 2005. Experiences from conducting semi-
structured interviews in empirical software engineering research. In 11th IEEE
International Software Metrics Symposium (METRICS’05). IEEE, 10–pp.

[110] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, An-
drea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in deep learning
systems. In Proceedings of the ACM/IEEE 42nd International Conference on Soft-
ware Engineering. 1110–1121. https://doi.org/10.1145/3377811.3380395

[111] Huaxi Jiang, Jie Zhu, Li Yang, Geng Liang, and Chun Zuo. 2021. DeepRelease:
Language-agnostic Release Notes Generation from Pull Requests of Open-source
Software. In 2021 28th Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 101–110. https://doi.org/10.1109/APSEC53868.2021.00018

[112] Jing Jiang, Qiudi Wu, Jin Cao, Xin Xia, and Li Zhang. 2021. Recommending tags
for pull requests in GitHub. Information and Software Technology 129 (2021),
106394. https://doi.org/10.1016/j.infsof.2020.106394

[113] Sebastian Klepper, Stephan Krusche, and Bernd Bruegge. 2016. Semi-automatic
generation of audience-specific release notes. In 2016 IEEE/ACM International
Workshop on Continuous Software Evolution and Delivery (CSED). IEEE, 19–22.

[114] Patrick Lam, Jens Dietrich, and David J Pearce. 2020. Putting the semantics
into semantic versioning. In Proceedings of the 2020 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 157–179. https://doi.org/10.1145/3426428.3426922

[115] Stanislav Levin and Amiram Yehudai. 2017. Boosting Automatic Commit Clas-
sification Into Maintenance Activities By Utilizing Source Code Changes. Asso-
ciation for Computing Machinery, New York, NY, USA.

[116] Walid Maalej and Hans-Jörg Happel. 2010. Can development work describe
itself?. In 2010 7th IEEE Working Conference on Mining Software Repositories
(MSR 2010). IEEE, 191–200. https://doi.org/10.1109/MSR.2010.5463344

[117] Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian
Marcus, and Gerardo Canfora. 2017. ARENA: An Approach for the Automated
Generation of Release Notes. IEEE Transactions on Software Engineering 43, 2
(2017), 106–127. https://doi.org/10.1109/TSE.2016.2591536

[118] Sristy Sumana Nath and Banani Roy. 2021. Towards automatically generat-
ing release notes using extractive summarization technique. In International
Conference on Software Engineering & Knowledge Engineering, SEKE. 241–248.

[119] Helena Holmström Olsson and Jan Bosch. 2014. From opinions to data-driven
software R&D: A multi-case study on how to close the ’open loop’ problem.
In 2014 40th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE, 9–16. https://doi.org/10.1109/SEAA.2014.75

[120] Carolyn B. Seaman. 1999. Qualitative methods in empirical studies of software
engineering. IEEE Transactions on software engineering 25, 4 (1999), 557–572.

[121] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M Ibrahim, Masao Ohira,
Bram Adams, Ahmed E Hassan, and Ken-ichi Matsumoto. 2013. Studying re-
opened bugs in open source software. Empirical Software Engineering 18, 5
(2013), 1005–1042. https://doi.org/10.1007/s10664-012-9228-6

[122] E. Burton Swanson. 1976. The Dimensions of Maintenance. In Proceedings of the
2nd International Conference on Software Engineering (San Francisco, California,
USA) (ICSE ’76). IEEE Computer Society Press, Washington, DC, USA, 492–497.

[123] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /* iComment:
Bugs or bad comments? */. In Proceedings of 21st ACM SIGOPS Symposium on
Operating Systems Principles. 145–158. https://doi.org/10.1145/1294261.1294276

[124] Xin Tan and Minghui Zhou. 2019. How to communicate when submitting
patches: An empirical study of the Linux kernel. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–26.

[125] Martina Toshevska and Sonja Gievska. 2021. A Review of Text Style Transfer
using Deep Learning. IEEE Transactions on Artificial Intelligence (2021), 1–1.

[126] Aidan ZH Yang, Safwat Hassan, Ying Zou, and Ahmed E Hassan. 2021. An
Empirical Study on Release Notes Patterns of Popular Apps in the Google Play
Store. Empirical Software Engineering (2021), 1–41.

[127] Liguo Yu. 2009. Mining change logs and release notes to understand software
maintenance and evolution. CLEI Electron Journal 12, 2 (2009), 1–10.

[128] Song Yu, Li Xu, Yan Zhang, Jinsong Wu, Zhifang Liao, and Yanbing Li. 2018.
NBSL: A Supervised Classification Model of Pull Request in Github. In 2018 IEEE
International Conference on Communications (ICC). 1–6.

[129] Juan Zhai, Yu Shi, Minxue Pan, Guian Zhou, Yongxiang Liu, Chunrong Fang,
Shiqing Ma, Lin Tan, and Xiangyu Zhang. 2020. C2S: translating natural lan-
guage comments to formal program specifications. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 25–37.

[130] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019. An
empirical study of common challenges in developing deep learning applications.
In 2019 IEEE 30th International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 104–115. https://doi.org/10.1109/ISSRE.2019.00020

[131] Yuxia Zhang, Minghui Zhou, Audris Mockus, and Zhi Jin. 2019. Companies’
Participation in OSS development–An empirical study of OpenStack. IEEE
Transactions on Software Engineering 47, 10 (2019), 2242–2259.

613

