
Self-Admitted Library Migrations in Java,
JavaScript, and Python Packaging Ecosystems: A

Comparative Study
Haiqiao Gu, Hao He, Minghui Zhou∗

School of Computer Science, Peking University, China
Key Laboratory of High Confidence Software Technologies, Ministry of Education, China

ghq@stu.pku.edu.cn, {heh, zhmh}@pku.edu.cn

Abstract—Reusing open-source software libraries has become
the norm in modern software development, but libraries can
fail due to various reasons, e.g., security vulnerabilities, lacking
features, and end of maintenance. In some cases, developers need
to replace a library with another competent library with similar
functionalities, i.e., library migration. Previous studies have lever-
aged library migrations as a unique lens of observation to reveal
insights into library selection and dependency management in
general. However, they are heavily biased toward Java while the
generalizability of their findings remains unknown.

In this paper, we present a comparative study on self-admitted
library migrations (SALMs) from three packaging ecosystems:
Java/Maven, JavaScript/npm, and Python/PyPI. For this study,
we design a set of semi-automatic methods that accurately locate
SALMs, their domains, and their rationales from git repositories.
We reveal that SALMs are prevalent and highly unidirectional in
all three ecosystems, and the underlying rationales can be well
covered by a previous theoretical framework. Also, SALMs in
these ecosystems present domain similarity (testing frameworks,
web frameworks, HTTP clients, and serialization). However, we
observe differences in the longitudinal trends, the distributions
of rationales, the ecosystem-specific domains, and the levels of
unidirectionality, all of which indicate that Python/PyPI sees
increasingly intense competition between libraries and deserves
more research on library recommendation and migration.

Index Terms—software packaging ecosystem, library migra-
tion, mining software repositories, cross-ecosystem comparison

I. INTRODUCTION

The reuse of open-source software libraries1 has long been
a common practice in software development which brings
various quality, productivity, and economic benefits [5]. In
the recent decade, the number of publicly available libraries
has soared in major software packaging ecosystems [6] (e.g.,
Java/Maven [7], JavaScript/npm [8], Python/PyPI [9]) and
complex dependency networks have been formed in each of
them [10]. Software projects belonging to, or reusing libraries
from such ecosystems, can establish dependencies on a large
number of libraries in that ecosystem [11], [12].

The growing number of libraries and dependencies means
that software projects nowadays, both open-source and pro-

∗Minghui Zhou is the corresponding author.
1Developers may use several different terms (e.g., library, package, frame-

work, component) to refer to a piece of reusable software. This paper uses the
term library to refer to all of them for consistency with prior work [1]–[4].

prietary, need to pay more and more attention to the selection
and management of their dependent libraries (i.e., dependency
management) [13]. Typically, developers need to select appro-
priate libraries for their project from a large choice space [14],
manage the versions of each library [15], [16], and react to crit-
ical library failures (e.g., lacking features or performance [4],
end of maintenance [17], security vulnerabilities [18]). Such
critical library failures can be sometimes resolved by an update
or a workaround, but often need to be resolved by replacing
the library with another competent library offering the same
or similar functionalities [4], [13]. This practice is referred to
as library migration in the existing literature [1]–[4].

Researchers have devoted substantial effort to the investiga-
tion of library migration (e.g., popularity, domains, rationales,
and directionality). In particular, researchers find that library
migrations 1) are prevalent in Java/Maven [1]–[4], 2) tend to
be unidirectional [4], and 3) are driven by a number of socio-
technical factors from the source library, the target library,
and project integration [1], [2], [4]. Their study subjects are
all Java/Maven, which has a long history and many ecosystem-
specific peculiarities. However, library migrations in other
packaging ecosystems may demonstrate different patterns and
it remains unknown to what extent the findings on Java/Maven
can be generalized to other ecosystems.

Therefore, we aim to verify the generalizability of results
and implications from previous library migration studies in a
broader context. Toward this goal, a comparative analysis of
major packaging ecosystems is necessary. In this study, we
target the following ecosystems: Java/Maven, JavaScript/npm,
and Python/PyPI, as they rank top-3 in terms of ecosystem
size [6], their programming languages rank top-3 in GitHub
in terms of popularity [19], and they cover diverse application
domains (e.g., mobile, web, AI). We believe an analysis and
comparison of the three ecosystems can yield results and
implications applicable to a broad developer audience.

Identifying library migrations from software repository data
is non-trivial: previous approaches either suffer from inaccu-
racies or require a huge amount of manual effort [20], [21].
To enable large-scale analyses and cross-ecosystem compar-
isons, we study self-admitted library migrations (SALMs),
i.e., library migrations explicitly admitted by developers in
the commit messages. We seek to empirically investigate their



prevalence, domains, rationales, and directionality, to explain
how and why SALMs occur and compare among ecosystems.
More specifically, we ask the following research questions:

• RQ1: How common are SALMs in Java/Maven,
JavaScript/npm, and Python/PyPI? How do the longitu-
dinal trends differ in the three ecosystems?

• RQ2: In what library domains do SALMs happen? How
do the domains differ in the three ecosystems?

• RQ3: What are the rationales for SALMs? How do the
rationales differ in the three ecosystems?

• RQ4: Are SALMs unidirectional? How does the direc-
tionality differ in the three ecosystems?

To answer the RQs, we design an NLP-powered heuristic-
based mining algorithm to automatically mine SALMs. By
applying the algorithm to 177,378 GitHub repositories using
libraries from Java/Maven, JavaScript/npm, or Python/PyPI,
we obtain 33,667 SALMs with 84.70%, 83.80%, and 86.50%
precision, respectively. We further apply a multitude of auto-
mated and manual methods to this dataset to answer the RQs.

Our study reveals a set of consistencies and discrepancies
regarding how and why SALMs happen in the three packaging
ecosystems. Although many previous findings about library
migration still hold in all of them, there are differences in terms
of longitudinal trends, application domains, rationales, and
directionality. Notably, the rising number of migrations and the
lower directionality in Python/PyPI indicate that Python/PyPI
is an ecosystem with many competitor libraries and more
research effort should be directed to help Python developers
select and migrate their libraries.

II. RELATED WORK

Nowadays, software projects are built upon a large number
of libraries (i.e., dependencies) and developers believe such
reuse leads to higher productivity, increased code quality, and
lower development costs [5]. However, this high level of reuse
also brings developers the new and increasingly important task
of dependency management in which many new problems need
to be addressed [13]. In this section, we review related work in
three key stages of dependency management: library selection,
library version management, and library migration.

A. Library Selection

For any highly-demanded feature or problem domain, it is
likely that several competitor libraries exist and developers
need to choose the most appropriate one for their projects [22].
Kavaler et al. [23] find that the adoption of different JavaScript
quality assurance tools (available in npm as “packages”) can
lead to different software maintenance outcomes. To identify
factors driving library selection, researchers have investigated
several cases in depth (e.g., trivial packages [24], JavaScript
frameworks [25], DevOps tools [26], R data tables [27]);
they find that library selection can be driven by a multitude
of technical, social, and economic factors (e.g., performance,
ease of use, community atmosphere, social network influence).
Similar factors are also obtained from a more general industrial
interview study by Vargas et al. [14]. Given the multitude of

factors, selecting non-trivial libraries can be a demanding task
requiring rich development experience and even a prototyping
trial [14], [25], [26]. To assist library selection, researchers
propose solutions to mine the differences of similar libraries
from Stack Overflow [28] or to aggregate important library
metrics in an IDE plugin [29].

B. Library Version Management

After library adoption, developers need to spend additional
development effort to maintain the versions of their libraries.
It is generally suggested as best practice that libraries should
be kept up-to-date to ensure project maintainability and supply
chain security in the long term [30], [31]. However, keeping
libraries up-to-date brings extra development costs due to the
risks of breaking changes [32] and many software projects still
use outdated dependencies [15]. Bavota et al. [33] find that
library updates in the Apache ecosystem are driven by major
new features but hindered by API removals. To make library
updates easier, researchers and practitioners have proposed and
evaluated various automated solutions, such as dependency
management bots [34]–[36] and API adaptation tools [37],
[38]. For projects with a large number of dependencies, devel-
opers may also need to handle version-related issues, such as
dependency conflicts [39], [40], version inconsistencies [41],
and incorrect version specifications [42], [43].

C. Library Migration

A software project and its dependencies generally evolve
in an asynchronous manner and project developers often have
little control over the development of their dependencies. Thus,
it is common for a library (denoted as l1) to have unexpected
failures or inability to meet the project’s expectations, even
if they are kept up-to-date. In such cases, developers need
to replace the library l1 with another library l2 with similar
functionalities. We consider this process as a library migration.
In some sense, library migrations can be viewed as the direct
consequence of improper library selections and lessons can
be learned in hindsight. Following previous work [1], [4], we
refer to l1 as the source library, l2 as the target library, and
⟨l1, l2⟩ as a migration rule in the remainder of this paper.

Library migrations are hard to study because it is challeng-
ing to locate ground truth migrations in the wild. Previous
studies either combine heuristic-based algorithms with manual
validation to mine library migrations from git repositories [1],
[3], [4], [20], [44], [45], or search for relevant discussions in
the issue tracker [2]. They report from their analyses that:

• Library migrations are prevalent in Java/Maven and more
likely to happen in mature projects with a large number
of dependencies [1]–[4], [20];

• Library migrations tend to be unidirectional [4], [44];
• Library migrations are driven by a number of socio-

technical factors from the source library, the target library,
and project integration [1], [2], [4], [44];

• Library migrations can improve code quality and reduce
the complexity of implementation [3], [44], but perfor-
mance is rarely improved for logging libraries [2];



• Library migrations are error prone and difficult [2], [44].
There is also research effort on the automation of library

migrations via wrapping APIs [46], [47] or mining API
mappings [48]–[50], and on the recommendation of library
migrations [21], [51]. However, almost all previous studies
are based on the Java/Maven ecosystem with only two excep-
tions [44], [45]: the former [44] is a case study on two Python
testing frameworks while the latter [45] builds a Python library
migration dataset. Neither of which contains large-scale empir-
ical analysis on multiple ecosystems and application domains.
The bias toward Java/Maven in the library migration literature
may hinder the application of their findings to developer com-
munities using different programming languages & packaging
ecosystems, similar to the API evolution literature [52].

In this study, we seek to investigate to what extent are the
findings and implications of previous studies on library migra-
tion generalizable to a broader context (i.e., three packaging
ecosystems, no specific domain). We expect such a study to
offer a unique perspective and insights into library selection,
library migration, and dependency management in general.

III. METHODOLOGY

A. Subjects of Study

Following prior studies [4], [10], [12], we consider Maven,
npm, or PyPI as packaging ecosystems and the versioned
artifacts hosted on Maven, npm, or PyPI as libraries. We con-
sider GitHub repositories that depend on libraries from Maven,
npm, or PyPI as projects. We focus on library migrations that
happened in the development history of projects depending on
libraries from one of the packaging ecosystems. However, the
identification of library migrations from project development
histories can be challenging: manual inspection would require
a prohibitive amount of effort, while the soundness of auto-
mated mining approaches is hard to guarantee [4]. Our insight
is to study self-admitted library migrations (SALMs), i.e.,
library migrations explicitly documented in commit messages.
Note that a GitHub repository can also host development for
a library, so our study covers migrations in the development
of both libraries and downstream applications.

1) Libraries: We utilize the Libraries.io dataset [53] (ver-
sion 1.6.0) to retrieve libraries in each ecosystem. Similar to
He et al. [4], we limit our analysis to only libraries with more
than 10 dependent GitHub repositories to exclude the cases
where developers upload internal artifacts to Maven, npm, or
PyPI but do not expect them to be reused by other projects.
After filtering, we get 14,629, 62,051, and 10,147 libraries in
Maven, npm, and PyPI, respectively. In this study, we only
consider migrations between these libraries.

2) Projects: We utilize the GHTorrent dataset [54] (version
2021-03-06) to retrieve projects in each ecosystem. We select
non-fork Python, Java, and JavaScript repositories with more
than 10 stars from GHTorrent and get 121,381 Python projects,
66,635 Java projects, and 160,211 JavaScript projects after
this step. Similar to previous studies [1], [4], we do not filter
by project quality or maturity in order to unveil general facts
and longitudinal trends about SALMs. For Java and JavaScript

Algorithm 1: Identifying SALMs
Input: Project set P , library set L, and thresholds t1, t2
Output: A set of SALMs SALM =
{⟨p, c, lsrc, ltgt⟩|p ∈ P, c ∈ commits(p), lsrc ∈ L, ltgt ∈ L}

1 DC ← ∅ # dependency changes
2 for p ∈ P do
3 for c ∈ commits(p) do
4 depold ← ∅, depnew ← ∅
5 for ⟨file, blobold, blobnew⟩ ∈ iter diffs(p, c) do
6 if not dependency file(file) then
7 continue
8 depold ← depold ∪ extract deps(blobold)
9 depnew ← depnew ∪ extract deps(blobnew)

10 L− ← (depold − depnew) ∩ L
11 L+ ← (depnew − depold) ∩ L
12 if L− ̸= ∅ ∧ L+ ̸= ∅ then
13 DC ← DC ∪ {⟨p, c, L−, L+⟩}
14 SALM ← ∅ # self-admitted library migrations
15 for ⟨p, c, L−, L+⟩ ∈ DC do
16 for ⟨lsrc, ltgt⟩ ∈ L− × L+ do
17 if match commit message(c, lsrc, ltgt, t1) ∧

get rule frequency(lsrc, ltgt) ≥ t2 then
18 SALM ← SALM ∪ {⟨p, c, lsrc, ltgt⟩}
19 return SALM

projects, we limit our analysis to projects with a dependency
configuration file (i.e., pom.xml and package.json, due to
reasons explained in Section III-B2), leaving us with 25,289
and 31,768 projects, respectively.

B. Identifying Self-Admitted Library Migrations (SALMs)

To identify SALMs, we design and employ an accurate
NLP-powered heuristic-based mining algorithm (Algorithm 1).

1) Overview of the Algorithm: The algorithm takes project
set P , library set L, and two threshold parameters t1 and t2, as
input. It returns a set of (possible) SALMs SALM , in which
each item is a 4-tuple. Each item ⟨p, c, lsrc, ltgt⟩ ∈ SALM
represents that project p has conducted a SALM from source
library lsrc to target library ltgt in commit c.

The algorithm consists of two main stages. In the first stage
(line 1-13), it constructs a set of dependency changes DC
in which each ⟨p, c, L−, L+⟩ ∈ DC represents that project p
removes library set L− and adds library set L+ in commit c
(ensuring that L− ̸= ∅, L+ ̸= ∅, and L− ∩ L+ = ∅). To con-
struct DC, it iterates over commits and file diffs (lines 4-5),2

skips non-dependency files (line 6-7, files other than pom.xml,
package.json, and *.py are all skipped in our case), and
extracts dependencies from the two file versions3 (lines 8-9,
extract deps will be explained in Section III-B2). Then,
a dependency change item ⟨p, c, L−, L+⟩ is added to DC if
the commit contains both added and removed dependencies
of our interest (lines 10-13). In the second stage, the algo-
rithm infers SALMs by considering both the commit message
and the frequency of the migration rule (line 17), in which

2Note that the commits in a git repository form a directed acyclic graph and
carefully designed heuristics are needed to avoid duplicate/missed dependency
changes (caused by merge commits) during the iteration of commits.

3Internally, git uses the blob object type to store the content of files in a
repository, and each version of a repository file corresponds to one blob



match commit message will be introduced in Section III-B3
and get rule frequency(lsrc, ltgt) is defined as the number
of dependency changes in which ⟨lsrc, ltgt⟩ belongs to the
Cartesian product of their added and removed libraries.

Note that the algorithm only considers single-commit
SALMs, similar to previous work [4], [21], as the accurate
detection of multi-commit or non-admitted migrations is much
more challenging. In other words, we favor the soundness of
our approach (i.e., precision) over broad coverage (i.e., recall)
to build a high-quality dataset of actual SALMs.

2) Extracting Dependencies: For Java and JavaScript
projects, the extract deps() function takes a lightweight
approach and extracts dependencies by parsing their pom.xml
and packages.json files. The rationales are that: 1) Java
and JavaScript projects often use a dependency manager (i.e.,
npm and Maven) and a configuration file (i.e., pom.xml and
package.json) declaring their dependent libraries; 2) their
declared dependencies are generally expected to be correct and
precise because their configurations are “strict” (i.e., a build
will typically fail if dependencies are wrong or missing).

The extraction of dependencies from Python projects is
more problematic, as there is no widely adopted dependency
management practice in Python. Developers can use various
dependency managers (e.g., pip, Conda, Poetry) and depen-
dency configuration files (e.g., requirements.txt, setup.py,
environment.yml, pyproject.toml); many even do not use
a dependency manager [55]. Moreover, several recent studies
show that dependency configuration errors are common in
Python projects [42], [43], [56]. Therefore, we resort to source
code analysis to extract dependencies from the Python project.

For the 10,147 libraries from PyPI, we build a mapping be-
tween library names (e.g., scikit-learn) and import names
(e.g., sklearn). We use a script to download a wheel for
each library version and extract top-level import names from
wheel metadata, and successfully get import names of 8,715
libraries. For the remaining 1,433 libraries without wheels, we
heuristically convert their library names to import names (e.g.,
convert to lowercase and replace "-" with " "). Then, for
each project, we get its dependencies by extracting all import
statements from Python source code and mapping import
names to their corresponding libraries. It is possible that one
import name may correspond to more than one library (i.e.,
import name collisions). In some cases, the import names just
happen to collide in two unrelated libraries (e.g., the name
peak from SymbolType and Importing); in other cases, a
group of related libraries shares the same import name (e.g.,
the name azure from azure-common, azure-mgmt-resource,
and azure-mgmt-network). The algorithm considers a project
as using all possible libraries in the case of an import name
collision, and in the latter case, the collided libraries will be
merged into a super library (Section III-C).

3) Matching Commit Messages: In the line 17 of Algo-
rithm 1, match commit message(c, lsrc, ltgt, t1) determines
whether the commit message of c contains a sentence that
states an SALM from lsrc to ltgt. First, for a commit message,
it applies sentence segmentation, word segmentation, part-

TABLE I. The subsequences for matching commit messages.
[a|b] means that both a and b will be matched for this item.

[add|get|use|install|require|switch|move|migrate|port|introduce] ltgt
[remove|drop|delete|abandon] lsrc
[switch|replace|migrate|swap out|upgrade] lsrc ltgt
[change|move|update] [ltgt lsrc|lsrc ltgt]
ltgt instead of lsrc
lsrc -> ltgt
[update|switch|change|convert|port|replace|require|use|fix] [lsrc|ltgt]

of-speech tagging, and lemmatization, using NLTK [57], to
convert each sentence in the message into word sequences.
Second, for each word sequence (i.e. a sentence), it identifies
possible words referring to lsrc or ltgt via fuzzy matching,
because developers often do not write canonical library names
in commit messages, especially in Java (e.g., log4j may
stand for org.apache.logging.log4j:log4j-core).4 Third,
it searches the word sequence for the presence of any subse-
quences in Table I (based on the patterns that we summarize
from the manually validated migration dataset in He et al. [4]).
If the distances of all adjacent words in a matched subsequence
are no more than t1, it will consider the commit message as a
match (i.e., likely to be stating a migration from lsrc to ltgt).

4) Evaluation: For match commit message(), we eval-
uate its effectiveness by computing the recall on the 3,163
migration commits analyzed in He et al. [4] and iteratively
refine the function until we believe the results are satisfactory
(the final version achieves a recall of 80.71%). For other
heuristics and parameters in Algorithm 1, we sample from
our identified SALMs, analyze the errors, and iteratively refine
the algorithm in a similar manner. Finally, we set t1 = 5 and
t2 = 2 and it returns 20,099, 5,926, and 7,642 SALMs from
Java, JavaScript, and Python projects, respectively. To evaluate
their quality, we sample 377, 360, and 372 SALMs from
each (confidence level = 95%, margin error = 5%), manually
determine their correctness by reading commit messages and
code diffs, and obtain 84.70%, 83.80%, and 86.50% precision,
respectively. The inaccuracies mainly come from three cases:
1) collisions between library names and common developer
terms (e.g, sys, core), 2) lsrc and ltgt share similar names
but have different functionalities (e.g., two components from
the same framework), and 3) the first two subsequences in
Table I can introduce some errors (we retain them to balance
between precision and recall). We will handle the second case
using super libraries (Section III-C).

C. Grouping Super Libraries

It is common for some “groups” of libraries to be closely
related to each other. For example, a framework can have
several components for different purposes (e.g., the azure case
in Section III-B2), a library may provide different distributions

4More specifically, the function divides the full name of lsrc and ltgt into
small parts (e.g. org.apache.logging.log4j:log4j-core is divided into
org, apache, logging, log4j, and core) and fuzzy match these parts in
commit message based on Levenshtein distances. Different thresholds are set
for parts of different lengths to ensure accuracy. It also handles the case in
which the names of lsrc and ltgt significantly overlap (e.g., a migration from
rollup-plugin-buble to @rollup/plugin-buble).



(e.g., ant:ant and ant:ant-nodeps), and some libraries may
rename themselves in major version updates (e.g., babel-core
renamed to @babel/core since 7.0.0). In some sense, they
can be logically considered as a single “library” and studying
migrations between them can introduce noises. Therefore, in
subsequent analyzes, we manually locate and group libraries
from these cases into super libraries (e.g., libraries in the
three former examples are merged into azure, ant, and
babel, respectively). Sometimes, it can be difficult to decide
how to group components from a large framework (e.g.,
springframework) into super libraries. Since the goal of this
step is to reduce the noise caused by migrations within super
libraries and developers do migrate framework components,
we focus on the functionalities of each component and group
components with different functionalities into different super
libraries (e.g. springdata, springcore, springcloud). After
grouping, we get 217, 36, and 32 super libraries in Java,
JavaScript, and Python, respectively.

D. Identifying Domains for SALMs

Considering the size of our dataset, we need to apply some
automation to get the application domain of each library
for answering RQ2. For libraries with natural language de-
scriptions in Libraries.io [53], we leverage BERTopic [58], a
robust unsupervised topic modeling technique based on large
language models and c-TF-IDF, to get clusters of libraries that
may belong to the same application domain. BERTopic [58]
can automatically infer the optimal number of clusters and
estimate the probability of each library belonging to its cluster.
We assign names to each cluster based on the topic words
generated by the model and consider all libraries with ≥ 0.5
probability as belonging to that cluster. To verify the reliability
of this model, we randomly pick five libraries for each cluster
with ≥ 0.5 probability, manually check whether they belong to
their clusters, and get an accuracy of 0.93. For the remaining
libraries and libraries without descriptions, we search relevant
information on the Internet, and manually assign them to
existing clusters or introduce a new cluster if necessary. For
a migration rule ⟨lsrc, ltgt⟩, we consider it as belonging to
domain X if both lsrc and ltgt are from X . lsrc and ltgt can
also fall into different domains (e.g., from HTTP clients to
web frameworks). We merge clusters with a few SALMs into
the Utility domain and finally get 11, 12, and 16 domains in
Java, JavaScript, and Python, respectively.

E. Identifying Rationales for SALMs

Developers may migrate libraries due to various reasons,
including usability, features, and so on [4]. An understanding
of why they choose to migrate and why they migrate to the
target library can help developers select a library or make
maintainers aware of the shortcomings of their libraries. Given
the scale of our dataset, we choose to first identify, through
keywords, possible commit messages that state their rationales
and then conduct manual labeling on the filtered dataset.

Similar to Section III-B3, we summarize common keywords
for SALM rationales (e.g., “because,” “since,” “so that”) based

TABLE II. An overview of statistics in our dataset

Data/Size Java JavaScript Python

Projects (P) 25,289 31,768 120,321
Libraries (L) 10,147 62,051 14,629
Dependency Changes (DC) 55,797 49,713 361,400
SALMs (SALM ) 20,099 5,926 7,642
SALMs (grouped) 2,938 1,557 5,805
Migration Rules 2,851 1,032 794
Migration Rules (grouped) 390 259 640
Estimated Precision 84.70% 83.80% 86.50%

on the migration dataset retrieved by He et al. [4]. We assume
that sentences near the SALM sentence are most likely to
mention rationales and only search for the keywords in the
SALM sentence and two adjacent sentences. This assumption
helps us avoid most false positives and the manual effort of
inspecting lengthy commit messages.

After filtering, we get 582, 283, and 1,126 commit messages
from Java, JavaScript, and Python projects, respectively. Then,
the first author, with more than three years of software devel-
opment experience in all three languages, uses the migration
rationale framework and the coding book provided by He et
al. [4] to code commit messages (including referenced issues
and pull requests). If some commit messages cannot fit into
the previous framework, he will revise the definitions or add
new categories. The second author, with more than five years
of software development experience in all three languages,
independently uses the new coding book to code all commits
and discuss with the first author to resolve the disagreements.
The inter-rater reliability between them is 0.83 (Krippendorff’s
alpha [59], which is a suitable measure because each commit
message can be labeled with multiple codes), indicating high
agreement [59]. Finally, we classify all commit messages into
13 categories of SALM rationales.

We provide an overview of our dataset in Table II. Here
SALMs (grouped) and Migration Rules (grouped) refer to the
number of SALMs and migration rules after the libraries are
grouped into super libraries and SALMs within super libraries
are removed. In this study, we mainly consider SALMs and
migration rules after grouping, as they are more likely to
be important and non-trivial migrations (as opposed to, e.g.,
migrations that occur due to library renames).

IV. RESULTS

A. RQ1: How common are SALMs in Java/Maven,
JavaScript/npm, and Python/PyPI? How do the longitudinal
trends differ in the three ecosystems?

Using Algorithm 1, we get 20,099, 5,926, and 7,642 SALMs
in Java, JavaScript, and Python projects, respectively (Ta-
ble II). Among the studied projects, 3,795 projects (15.01%) in
Java, 1,432 projects (4.51%) in JavaScript, and 4,409 projects
(3.66%) in Python have conducted at least one SALM. After
grouping super libraries, we get 2,938, 1,557, and 5,805
SALMs, respectively. The numbers drop significantly in Java
and JavaScript projects, but only marginally in Python projects
because more SALMs happen within super libraries in Java
and JavaScript projects (mostly due to library renames).



2005 2008 2011 2014 2017 2020
Year

0

500

1000

1500

2000

2500
#C

om
m

its
Java Ungrouped
Java Grouped
JavaScript Ungrouped
JavaScript Grouped
Python Ungrouped
Python Grouped

(a) # of SALMs

2005 2008 2011 2014 2017 2020
Year

0

200

400

600

800

#P
ro

je
ct

s

Java Ungrouped
Java Grouped
JavaScript Ungrouped
JavaScript Grouped
Python Ungrouped
Python Grouped

(b) # of active projects with ≥1 SALM(s)

2005 2008 2011 2014 2017 2020
Year

0.00

0.01

0.02

0.03

0.04

Ra
tio

 o
f P

ro
je

ct
s

Java Ungrouped
Java Grouped
JavaScript Ungrouped
JavaScript Grouped
Python Ungrouped
Python Grouped

(c) Ratio of active projects with ≥1 SALM(s)

Fig. 1: The longitudinal trend of SALMs in Java, JavaScript, and Python projects, from 2005 to 2020

Java JavaScript Python
Language

0

2

4

6

#M
ig

ra
tio

ns
 in

 To
ta

l

Ungrouped Dataset
Grouped Dataset

Java JavaScript Python
Language

0.0

0.5

1.0

1.5

#M
ig

ra
tio

ns
 p

er
 Ye

ar Ungrouped Dataset
Grouped Dataset

Fig. 2: # of SALMs by a project (in total / per year)

We plot the longitudinal trend of SALMs (with or without
grouping) in Figure 1, which starts from 2005 and ends in
2020 because the data are scarce before 2005 and trim in July
2021. Figure 1(a) and 1(b) show that the number of SALMs
and the number of active (i.e., having commit activity in this
year) projects with ≥1 SALM(s) increase at the beginning
but change differently later in the three ecosystems. The ratio
of active projects with ≥1 library SALM(s) to all active
projects has remained relatively stable with some upward and
downward trends (shown in Figure 1(c)).

The number of SALMs and the number of active projects
with ≥1 SALM(s) evolve differently in the three ecosystems.
For Java, the numbers remain stable and the proportion de-
creases after 2014; for JavaScript, SALMs emerge late (as
npm is first released in 2011), grow rapidly, but have a
slight downward trend after 2018; for Python, the number of
SALMs is constantly increasing, the proportion fluctuates from
2005 to 2008 (due to the limited number of data points) and
shows a slightly increasing trend ever since. Python’s peak in
2016 is due to the deprecation of python-keystoneclient
and tempest-lib in all OpenStack projects. The differences
indicate that Java and JavaScript projects may have stabilized
dependency management practices while Python projects have
not reached such stabilization yet, with unsettled library selec-
tion best practices and intense competition between libraries.

We compute the number of SALMs in each project and
the average number per year, to plot the overall distributions
in Figure 2. For each sub-figure, two boxes are drawn for
each ecosystem. The left box represents the SALM dataset
before grouping super libraries and the right box represents
the dataset after grouping. We observe skewed distributions in
terms of SALM frequency: 75% projects conduct less than five
SALMs in total and one SALM per year. JavaScript projects
migrate libraries (0.67 / 0.50 for ungrouped / grouped dataset
per year in median) slightly more often than Java (0.40 / 0.25)
and Python projects (0.29 / 0.29).

Summary for RQ1:

SALMs are prevalent in all three packaging ecosystems.
Java/Maven and JavaScript/npm see a stabilized number
of SALMs and a reduced proportion of active projects
with ≥1 SALM(s) since 2014 and 2018, respectively. For
Python/PyPI, both the number and the proportion show
an increasing trend across the observed timespan.

B. RQ2: In what library domains do SALMs happen? How do
the domains differ in the three ecosystems?

Following the method in Section III-D, we plot the domain
distributions and the evolution of SALMs in each domain for
the three ecosystems in Figure 3. To our surprise, although
these ecosystems are targeted for different application domains
(e.g. frontend for JavaScript), their SALM domains still share
some degree of similarity. In all these ecosystems, around half
(48.39% in Java, 45.92% in JavaScript, 60.17% in Python) of
the SALMs happen among testing frameworks, web frame-
works, HTTP clients, and serialization libraries.

The specific distributions differ among the ecosystems and
there are also ecosystem-specific domains in which SALMs
happen. For example, the percentage of web framework mi-
grations in Java and JavaScript is higher than that in Python.
The most prevalent SALM domains are logging libraries in
Java (23.58%), UI libraries in JavaScript (21.61%), and testing
frameworks in Python (21.63%), two of which have been
investigated in prior work [2], [44]. In terms of domain
evolution, we find that the number of SALMs among seri-
alization libraries remains stable and the number of SALMs
among testing frameworks is constantly increasing in all three
ecosystems. Since testing is a sophisticated endeavor and
testing frameworks are tightly coupled with the code base,
developers tend to migrate to more powerful frameworks
with simpler syntax and higher fixture flexibility for ease of
maintenance [44] (more details in Section IV-C).

Summary for RQ2:

In all three ecosystems, around half of the SALMs hap-
pen among testing frameworks, web frameworks, HTTP
clients, and serialization libraries. There are also highly
common, yet ecosystem-specific, SALM domains (e.g.,
UI libraries in JavaScript).



HTTP Clients (197, 5.78%)
Dependency Injection (46, 1.35%)Graphic (23, 0.67%)Auth (18, 0.53%)

Logging (804, 23.58%)

Testing (598, 17.54%)

Web Framework (542, 15.89%)
Database (325, 9.53%)

Serialization (313, 9.18%)

Utility (303, 8.89%)

Building (241, 7.07%)

(a) Distribution in Java

Codestyle (62, 3.37%)
Serialization (37, 2.01%)
Filesystem (26, 1.41%)Database (9, 0.49%)Logging (3, 0.16%)

UI (398, 21.61%)

Testing (374, 20.30%)

Web Framework (308, 16.72%)

Utility (205, 11.13%)

Building (189, 10.26%)

HTTP Clients (127, 6.89%)
Typescript (104, 5.65%)

(b) Distribution in JavaScript

Database (148, 2.33%)
Scientific (119, 1.87%)
Codestyle (103, 1.62%)
Documentation (82, 1.29%)
HTML (72, 1.13%)Logging (55, 0.86%)Graphic (43, 0.68%)

Testing (1376, 21.63%)

HTTP Clients (1314, 20.65%)

Utility (799, 12.56%)
Serialization (757, 11.90%)

Filesystem (503, 7.91%)

Web Framework (381, 5.99%)
Crypto (239, 3.76%)

Deep Learning (220, 3.46%)Auth (151, 2.37%)

(c) Distribution in Python

2005 2008 2011 2014 2017 2020
Year

0

100

200

300

#M
ig

ra
tio

ns

Testing
HTTP Clients
Web Framework
Utility
Serialization
Database
Building
Logging
Dependency Injection
Graphic

(d) Evolution in Java

2005 2008 2011 2014 2017 2020
Year

0

100

200

300

400

#M
ig

ra
tio

ns

Testing
HTTP Clients
Web Framework
Utility
Serialization
Building
UI
Codestyle
Typescript
Filesystem

(e) Evolution in JavaScript

2005 2008 2011 2014 2017 2020
Year

0

250

500

750

1000

#M
ig

ra
tio

ns

Testing
HTTP Clients
Web Framework
Utility
Serialization
Database
Filesystem
Crypto
Auth
Deep Learning

(f) Evolution in Python

Fig. 3: The distributions of SALM domains and their evolution in Java, JavaScript, and Python projects

C. RQ3: What are the rationales for SALMs? How do the
rationales differ in the three ecosystems?

Table III provides detailed definitions and examples for
each of the 13 SALM rationale categories, grouped into three
themes (source library, target library, and project specific).
Rationales whose definitions are extended w.r.t. He et al. [4]
are marked with † and the specific differences are highlighted
with underlines. In general, we conclude that the previous 13-
category framework by He et al. [4] can be generalized to all
three ecosystems well, with only some minor modifications.

However, by plotting the distribution of SALM rationales
(in terms of the number of projects that have migrated due
to the rationale) in Table IV, we observe significant dif-
ferences among the three ecosystems. For Python projects,
properties of the target library are more likely to be the
reasons why developers choose to conduct a migration (42.0%,
compared with 20.8% and 25.0% in Java and JavaScript
projects, respectively). The reason for this may be that the
Python/PyPI ecosystem still sees many libraries with similar
functionalities competing with each other (e.g., urllib and
requests), and libraries that are more powerful, flexible, or
easier to use, can win favor from developers using other
libraries. Different from JavaScript, project-specific reasons
largely consumes the Java/Maven and Python/PyPI ecosystem
(43.0% and 37.8%, compared with 18.5% in JavaScript/npm),
indicating that developers in the two ecosystems more often
need to integrate different dependencies or fall into various
dependency management issues. It is also interesting to note
that although both npm and PyPI have a rapidly growing num-
ber of libraries, it is more often that issues in source libraries
(56.5%, mainly deprecations, 47.2%) trigger migrations in
JavaScript projects. In JavaScript/npm, we observe that it is
common for new libraries to emerge one after another in the
same domain and older libraries can become unmaintained
very quickly, causing issues and extra migration workloads
for developers. Examples include node-sass, next-sass, and
dart-sass frameworks for the implementation of Sass (an
extended style sheet language over CSS) and axios, got, and

request for making and handling HTTP requests.
We also plot the evolution of SALMs mentioned with

rationales in Figure 4. The distribution of SALM rationales
is shown more intuitively in these three ecosystems (e.g., the
dominating project-specific rationales in Java). Apart from
this, we observe a rapidly surging trend of SALMs due to
the source library in JavaScript/npm, indicating that the rapid
deprecations of libraries are causing more and more issues for
JavaScript developers.

Summary for RQ3:

The rationale framework of He et al. [4] is generalizable
to all three ecosystems, but the distribution of rationales
vastly differ: Java developers tend to migrate for project
integration, JavaScript developers tend to migrate due to
issues in the source libraries, and Python developers tend
to migrate for more competent target libraries.

D. RQ4: Are SALMs unidirectional? How does the direction-
ality differ in the three ecosystems?

Directionality refers to whether a library is always adopted
or abandoned by developers among all SALMs. If a migration
rule has directionality, or a migration rule is unidirectional,
it means that the source library is almost always abandoned
and the target library is almost always adopted. Following the
study of He et al. [4], we use flow(l) to describe the degree
to which a library is adopted or abandoned.

flow(l) =

∣∣∣∣out deg(l)− in deg(l)

out deg(l) + in deg(l)

∣∣∣∣ (1)

If flow(l) = 1, it means that l is totally abandoned or
adopted in all migrations; if flow(l) = 0, it means that l has
been abandoned and adopted the same number of times.

We plot the distribution of the total SALM flow of these
three ecosystems in Figure 5(a). We find that the distribution
of flow(l) shows a clear peak no matter in which ecosystem,
which means that most libraries are either always adopted or



TABLE III. Definitions and examples of SALM rationales. The rationales marked with † have extended definitions compared
to He et al. [4] and the extended definitions are highlighted with underlines.

Rationale Definition Examples

So
ur

ce
L

ib
ra

ry Deprecation The source library is inactive, not maintained, will be deprecated in
the future, or not recommended to use officially.

1) Replace usage of the deprecated request-promise library with
axios [60] (JavaScript). 2) Switch deprecated react-router-redux to
connected-react-router [61] (JavaScript).

Bug or issue† 1) Source library has bugs or emits warnings. 2) The source library
can not be downloaded or installed successfully because of its own
issues.

1) Switched twitter back to tweepy because the new api was bugging out
[62] (Python). 2) Changed module to Cryptodome to use AES crypto for
cpasswords. The Crypto package wasn’t fetched properly however Cryptodome
is [63] (Python).

Security† 1) The source library has known security vulnerabilities. 2) The
source library has security-related issues such as thread insafety and
memory leaks.

1) Switching rollup → webpack for OG image component. Fix bl security
vulnerability [64] (JavaScript). 2) Switch fetch url from urllib to httplib to
avoid garbage and memleaks [65] (Python).

Ta
rg

et
L

ib
ra

ry Functionality† 1) The target library has new and powerful functionalities for
project to implement their desired features. 2) The target library
is the superset of source library. 3) The target library has more
functionalities and make the project more adaptable to future changes.

1) This includes moving from underscore to lodash as it has better module
support and array functionality [66] (JavaScript). 2) Replaced commentjson
with PyYAML (since json is a subset of the yaml format) [67] (Python).
3) Replace pytest-mock with generic unittest mock because pytest-mock
only supports function-scope [68] (Python).

Usability† 1) The target library is easy to install, use, or maintain; the target
library has better documentation. 2) Using the target library can
bring ease of implementation and cleaner code. 3) The target library
provides user-friendly configurations, APIs, and outputs.

1) Switched to the better documented assertj [69] (Java). 2) Moved this to
use Gson because it makes code cleaner [70] (Java). 3) Move to gulp-tasks
flow for (hopefully) easier understanding of tasks [71] (JavaScript).

Performance† 1) Using the target library can improve runtime performance. 2) Using
the target library results in less resource usage (e.g., memory).

1) Moved get requests to aiohttp for quicker response times [72] (Python).
2) Replace HSQLDB with H2 for greatly reduced memory usage [73] (Java).

Activity† Although the source library is under maintenance, the project still
chooses to use a more recent, well-maintained dependency.

Pydot seems to be newer than pydotplus, and has more maintainers. So
switch this code to use pydot [74] (Python).

Popularity The target library is more widely used or complies with industrial
standards/ecosystem best practices.

GSON is used by many upstream ODL projects and is the desired single JSON
library for the future [75] (Java).

Size/Complexity The target library is simpler or results in a smaller binary size. This swaps chalk out for kleur which is smaller and faster. [76] (JavaScript).

Pr
oj

ec
t

Sp
ec

ifi
c Integration 1) The project needs to integrate with operating systems, platforms,

or frameworks. 2) The project needs to support a new version or
standard of programming language (Python 3, ES 6, Java 8, etc.).
3) The project has to resolve conflicts between dependencies.

1) Uses apache httpcomponents instead of commons httpclient (so that
it can run on an android device without other dependencies for example) [77]
(Java). 2) Use uglify-es for ES6 support [78] (JavaScript). 3) Mockito and
jMock pulls in the different versions of Hamcrest, and it conflicts with the
version pulled by jUnit [79] (Java).

Simplification† 1) The project migrate to reduce the number of dependencies. 2) The
project unifies dependencies to ensure consistency within the project
and avoid duplications. 3) The project no longer needs to support
legacy platforms (e.g., Python 2) and replace relevant libraries.

1) Use built-in json for object-to-JSON conversion [80] (Python).
2) Replaced SLF4J and Logback with log4j bridge, to unify log configuration
[81] (Java). 3) It’s 2020, and we’ve long deprecated py26, so we can rely on
argparse to be available [82] (Python).

Organization The project conducts a migration to follow the conventions or
regulations of its belonging community or organization.

In order to migrate the code base to the ”OpenStack way” [83] (Python).

License The project conducts migration to resolve incompatibilities between
open-source licenses.

Replaced the org.json JSON lib with JSON.simple since the license of
org.json isn’t GPL compatible [84] (Java).

2005 2010 2015 2020
Year

0

5

10

15

#M
ig

ra
tio

ns
 in

 Ja
va

Source Library
Target Library
Project Specific

2005 2010 2015 2020
Year

0

5

10

15

20

#M
ig

ra
tio

ns
 in

 Ja
va

Sc
rip

t

Source Library
Target Library
Project Specific

2005 2010 2015 2020
Year

0

10

20

30

#M
ig

ra
tio

ns
 in

 P
yt

ho
n Source Library

Target Library
Project Specific

Fig. 4: # of projects that migrate due to different rationales in each year in Java, JavaScript, and Python

abandoned in SALMs. However, it is worth noting that there
are more libraries whose adoption rate and abandonment rate
are similar (flow(l) are closer to 0) in Python than in Java
and JavaScript, such as unittest, Flask, urllib and so on,
which means developers in different projects can either adopt
or abandon these libraries.

To explore further, we seek to find the relationship between
the directionality and the SALM rationales summarized in
Section IV-C. Therefore, we calculate the SALM flows for
libraries migrated due to source library, target library, and
project-specific, respectively, and plot their distributions in
Figure 5(b). The results show that the distribution of SALM
flow seems more uniform (more libraries’ flow(l) are closer to
0) for libraries migrated due to features of the target library or
project-specific reasons than that for libraries migrated due to

problems in the source library. It means that SALMs because
of source libraries are more unidirectional than those because
of target libraries and project-specific reasons. Most developers
will drop a deprecated or buggy library, but different devel-
opers have different criteria for functionality, usability, and
performance. SALMs caused by project-specific reasons are
also less unidirectional as projects may have different contexts
and use cases where the most suitable library may differ.

Summary for RQ4:

SALMs are highly unidirectional in all three ecosystems
with a less degree in Python/PyPI. SALMs due to issues
in the source library tend to be more unidirectional than
SALMs due to target library or project-specific reasons.



TABLE IV. Distribution of SALM rationales

Rationale Java JavaScript Python

Source Library 46 22.2% 61 56.5% 107 20.2%
Deprecation 35 16.9% 51 47.2% 56 10.6%
Bug or issue 6 2.9% 7 6.5% 37 7.0%
Security† 5 2.4% 3 2.8% 14 2.6%

Target Library 43 20.8% 27 25.0% 222 42.0%
Feature 13 6.3% 10 9.3% 88 16.6%
Usability† 18 8.7% 4 3.7% 58 11.0%
Performance† 6 2.9% 6 5.6% 61 11.5%
Activity† 3 1.4% 2 1.9% 8 1.5%
Popularity 2 1.0% 2 1.9% 6 1.1%
Size/Complexity 1 0.5% 3 2.8% 1 0.2%

Project Specific 89 43.0% 20 18.5% 200 37.8%
Integration† 54 26.1% 17 15.7% 146 27.6%
Simplification† 33 15.9% 3 2.8% 48 9.1%
Organization Influence 0 0.0% 0 0.0% 3 0.6%
License 2 1.0% 0 0.0% 3 0.6%

Total 178 100.0% 108 100.0% 529 100.0%

0.0 0.2 0.4 0.6 0.8 1.0
Flow for Java Rules

101

102

Co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
Flow for JavaScript Rules

101

102

Co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
Flow for Python Rules

101

102

Co
un

t

(a) Distribution of total flow(l)

0.0 0.2 0.4 0.6 0.8 1.0
Flow for Rules Caused by Source Library

101

102

Co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
Flow for Rules Caused by Target Library

101

102

Co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
Flow for Rules Caused by Project Specific

101

102

Co
un

t

(b) Distribution of flow(l) migrated
due to different reasons

Fig. 5: flow(l) distributions in the three ecosystems

V. DISCUSSION

A. Implications

The results from our study indicate that, despite the high
cost, a non-negligible number of projects have conducted li-
brary migration in all three packaging ecosystems. Most of the
migrations happen between “competitor” libraries in the same
domain, and it is common for projects to mistakenly select
one library and later migrate to another, indicating flaws in the
current library selection practices. Although several tools have
been proposed recently to support library selection [29], [85],
they often do not consider post-selection failures. It would be
interesting to investigate why developers overlook important
library properties (like those in Table III) at the beginning and
design tools to overcome the limitations of current practice.

There are both universal library domains in which migra-
tions frequently happen (i.e., testing frameworks, web frame-
works, HTTP clients, and serialization) and domains unique to
each ecosystem (e.g., UI libraries in JavaScript/npm). Similar
to previous studies on Java logging library migrations [2] and
Python testing framework migrations [44], we suggest future
in-depth studies on other popular domains (e.g., serialization,
UI, HTTP clients) to reveal more information on these migra-
tions and formulate domain-specific best practices. Our dataset
(see Section VII) can serve as a starting point.

1) The Python/PyPI Ecosystem: It is noteworthy that li-
brary migrations in Python/PyPI maintain stable growth in

the past decade (RQ1), which contrasts sharply with the
stabilized and slightly decreasing trend of Java/Maven and
JavaScript/npm. Moreover, Python projects are generally more
concerned with the overall superiority of target libraries
(RQ3), and the migrations show less unidirectionality com-
pared with Java and JavaScript projects (RQ4). The unique
characteristics of Python/PyPI indicate that it is in a critical
stage of development: libraries with different features and
technologies are constantly emerging and competing for the
state-of-the-art. However, as indicated by the presence of
SALMs and results from recent studies [42], [43], [55], [56],
Python developers are facing a multitude of dependency man-
agement problems. To help practitioners select and migrate
libraries, we suggest researchers investigate library recommen-
dation and API migration approaches in Python/PyPI, similar
to previous studies in the Java literature [21], [48], [50].

2) On the Development of Packaging Ecosystems: From the
perspective of library migration, we argue that JavaScript/npm,
Python/PyPI, and Java/Maven represent three different stages
of packaging ecosystem development, which we name here as
the stage of retention, the stage of competition, and the stage
of evolution & expansion, respectively.

With only a decade of history (as npm was first released in
2011), JavaScript/npm seems to be currently in the stage of
retention. In this stage, a large number of libraries are released
every day and their main goal is to ensure their retention and
adoption by developers. Therefore, JavaScript/npm libraries
are generally of smaller scale (many of them are even trivial
packages [24]) and evolve rapidly, but these libraries are also
more likely to have quality, security, or sustainability issues.
This may explain why in JavaScript/npm, most of the SALMs
happen due to issues in the source library (RQ3). Although
the deprecation mechanism in npm [86] helps developers avoid
and migrate deprecated libraries, it may be more useful to have
mechanisms to signal libraries in decline early [87].

For Python/PyPI, it is likely at an intermediate stage of
development, the stage of competition. In this stage, developers
are more concerned about the key features (i.e., functionality,
usability, performance) of libraries. Technology innovation is
common and there are often several libraries in one popular
domain with similar functionalities. However, these libraries
have different key features and developers are still unaware of
any certain best practices for library selection. This is the stage
where utilities for comparing similar libraries can be especially
helpful [28], [29], [85], e.g., a platform that groups and labels
libraries by their functionalities, outlines their key features,
and demonstrate their key metrics for facilitating adoption and
migration (e.g., recent adoption rates, migration flows).

For the Java/Maven ecosystem, the most mature ecosystem
of the three, it has undergone the former two stages and entered
the stage of evolution & expansion. In this stage, libraries with
the best key features have won and stood firm. The main task
for maintainers is to maintain and evolve their libraries (i.e.,
upgrades). During library migrations, developers’ concerns
gradually transfer to simplification and integration with their
projects (RQ3). To reduce this effort, we suggest developers



use related automated tools (e.g., Maven helper [88]) to check
and resolve conflicts between dependencies and licenses.

Whatever stage a packaging ecosystem has reached, the “life
and death” of libraries and the migrations between libraries
are inevitable due to the decentralized and voluntary nature
of open source development. We believe that the tools and
strategies mentioned above would be very important in both
the dependency management of individual projects and the
sustainability of packaging ecosystems.

B. Threats to Validity

1) Construct Validity: We use SALMs as the proxy for
studying all library migrations, which may result in the omis-
sion of information to a certain extent. As SALMs can only
be identified from projects with good commit messages, our
intuition is that they may be of higher quality and more valu-
able for practice. It is also difficult to obtain a comprehensive
non-admitted migration dataset and thus estimate the ratio
of SALMs compared with all actual library migrations that
happened in the wild. Despite this, SALMs alone have already
provided a promising landscape and we leave the investigation
of non-admitted migrations for future work.

2) Internal Validity: It is non-trivial implementation work
to compute dependency changes from git repositories and any
implementation errors would more or less introduce noise
into our dataset. To mitigate this threat, we carefully design
and test a strict data structure that ensures each dependency
change is included once and only once. Extracting depen-
dencies from configuration files and source code brings lim-
itations as well: dependencies declared in configuration files
or source code files can be unused (i.e., bloated). However,
our focus on SALMs can guarantee the high accuracy of
our mining approach (Algorithm 1) and mitigate this effect.
We also drop duplicate migrations to avoid overestimation
because of dependency transfer between different modules
or hidden forks. The performance of our mining approach
significantly influences the soundness of our results. Therefore,
we iteratively refine the algorithm based on our dataset and
try out different thresholds to identify the optimal approach
that balances between precision and recall. Filter reasons by
keywords may cause a loss of information to a certain extent,
so we adopt as many related words as possible based on a
previous dataset [4]. The identification of SALMs, the group
of super libraries, the resolution of library domains, and
the categorization reasons may all have labeling or manual
errors. Thus, the two authors double check the accuracy, gather
reliable information, and code independently to alleviate this
threat. We mainly considered SALMs after the libraries are
grouped into super libraries. On the one hand, grouping
super libraries can mitigate noisy migrations between different
components or distributions of the same framework. On the
other hand, it can avoid trivial migrations due to library
renames. We believe the grouped dataset can bring us more
accurate and in-depth insight into library migrations.

3) External Validity: Our findings may not generalize to
migrations in other projects and between other libraries.

We mitigate this threat by selecting a large-scale dataset of
GitHub projects and popular libraries. Our findings may not
generalize to projects that do not use PyPI, Maven, or npm,
and migrations beyond these packaging ecosystems. However,
the three languages and their packaging ecosystems are the
most popular ones on GitHub, are adopted in many different
application domains, and demonstrate different characteristics
in our results. Therefore, we believe the findings based on the
three ecosystems can provide insights applicable to a diverse
range of developers and stakeholders.

VI. CONCLUSION

In this paper, we report a comparative study that mines and
compares a massive number of SALMs from GitHub reposito-
ries depending on libraries from the three software packaging
ecosystems: Java/Maven, JavaScript/npm, and Python/PyPI. To
summarize, this paper makes the following main contributions:

• A mining algorithm and a semi-automatic method that ac-
curately finds SALMs and their corresponding rationales
from git repositories.

• An empirical verification on the generalizability of previ-
ous library migration research in the Java/Maven ecosys-
tem [1]–[3], especially [4].

• A set of commonalities and discrepancies regarding how
and why SALMs happen in the three ecosystems, which
points to several future research directions and reveals
insights about the development of software packaging
ecosystems in general.

Several directions of future work arise from our study. The
first one is the in-depth case studies of library migrations in
the common application domains revealed by our study. The
second one is the development of novel library recommen-
dation and API migration approaches in the Python/PyPI and
JavaScript/npm ecosystems. Finally, it is also worth investigat-
ing the general theories of how libraries compete with each
other and how a packaging ecosystem is formed.

VII. DATA AVAILABILITY

The replication package of our study is available at:
https://doi.org/10.5281/zenodo.7524376
https://github.com/guhaiqiao/SALMC

It contains a preprocessed and curated dataset of library mi-
grations in the Java/Maven, JavaScript/npm, and Python/PyPI
packaging ecosystems. It also contains the Python scripts
and Jupyter Notebooks which can replicate the results of all
four research questions in our paper. We hope the replication
package can be used to facilitate further research on library
migrations and other related topics.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China Grant 61825201 and 62142201. We sin-
cerely thank Runzhi He for his suggestions and contributions
to dataset curation, and the anonymous reviewers for their
insightful and constructive comments.

https://doi.org/10.5281/zenodo.7524376
https://github.com/guhaiqiao/SALMC


REFERENCES

[1] C. Teyton, J. Falleri, M. Palyart, and X. Blanc, “A study of library
migrations in Java,” J. Softw. Evol. Process., vol. 26, no. 11, pp. 1030–
1052, 2014.

[2] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan, “Logging library
migrations: A case study for the Apache Software Foundation projects,”
in Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016. ACM,
2016, pp. 154–164.

[3] H. Alrubaye, D. Alshoaibi, E. A. AlOmar, M. W. Mkaouer, and
A. Ouni, “How does library migration impact software quality and
comprehension? An empirical study,” in Reuse in Emerging Software
Engineering Practices - 19th International Conference on Software
and Systems Reuse, ICSR 2020, Hammamet, Tunisia, December 2-4,
2020, Proceedings, ser. Lecture Notes in Computer Science, vol. 12541.
Springer, 2020, pp. 245–260.

[4] H. He, R. He, H. Gu, and M. Zhou, “A large-scale empirical study on
Java library migrations: Prevalence, trends, and rationales,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021. ACM, 2021, pp. 478–490.

[5] P. Mohagheghi and R. Conradi, “Quality, productivity and economic
benefits of software reuse: A review of industrial studies,” Empir. Softw.
Eng., vol. 12, no. 5, pp. 471–516, 2007.

[6] (2022, Augest) Module counts. [Online]. Available: http://www.
modulecounts.com/

[7] (2022, Augest) Maven. [Online]. Available: https://mvnrepository.com/
[8] (2022, Augest) npm. [Online]. Available: https://www.npmjs.com/
[9] (2022, Augest) PyPI. [Online]. Available: https://pypi.org/

[10] A. Decan, T. Mens, and P. Grosjean, “An empirical comparison of
dependency network evolution in seven software packaging ecosystems,”
Empir. Softw. Eng., vol. 24, no. 1, pp. 381–416, 2019.

[11] M. Zimmermann, C. Staicu, C. Tenny, and M. Pradel, “Small world with
high risks: A study of security threats in the npm ecosystem,” in 28th
USENIX Security Symposium, USENIX Security 2019, Santa Clara, CA,
USA, August 14-16, 2019. USENIX Association, 2019, pp. 995–1010.

[12] Y. Wang, B. Chen, K. Huang, B. Shi, C. Xu, X. Peng, Y. Wu, and
Y. Liu, “An empirical study of usages, updates and risks of third-
party libraries in Java projects,” in IEEE International Conference on
Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia,
September 28 - October 2, 2020. IEEE, 2020, pp. 35–45.

[13] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative study of
dependency management and its security implications,” in CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. ACM, 2020, pp.
1513–1531.

[14] E. L. Vargas, M. F. Aniche, C. Treude, M. Bruntink, and G. Gousios,
“Selecting third-party libraries: The practitioners’ perspective,” in
ESEC/FSE ’20: 28th ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020. ACM, 2020, pp. 245–256.

[15] R. G. Kula, D. M. Germán, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies? - An empirical study on
the impact of security advisories on library migration,” Empir. Softw.
Eng., vol. 23, no. 1, pp. 384–417, 2018.

[16] F. R. Côgo, G. A. Oliva, and A. E. Hassan, “An empirical study of
dependency downgrades in the npm ecosystem,” IEEE Trans. Software
Eng., vol. 47, no. 11, pp. 2457–2470, 2021.

[17] M. Valiev, B. Vasilescu, and J. D. Herbsleb, “Ecosystem-level deter-
minants of sustained activity in open-source projects: A case study of
the PyPI ecosystem,” in Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018, 2018, pp. 644–655.

[18] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
MSR 2018, Gothenburg, Sweden, May 28-29, 2018, 2018, pp. 181–191.

[19] GitHub, Inc. (2021) The state of the Octoverse: Top languages
over the years. [Online]. Available: https://octoverse.github.com/
#top-languages-over-the-years

[20] C. Teyton, J. Falleri, and X. Blanc, “Mining library migration graphs,”
in 19th Working Conference on Reverse Engineering, WCRE 2012,
Kingston, ON, Canada, October 15-18, 2012. IEEE Computer Society,
2012, pp. 289–298.

[21] H. He, Y. Xu, Y. Ma, Y. Xu, G. Liang, and M. Zhou, “A multi-
metric ranking approach for library migration recommendations,” in 28th
IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2021, Honolulu, HI, USA, March 9-12, 2021.
IEEE, 2021, pp. 72–83.

[22] C. Chen, S. Gao, and Z. Xing, “Mining analogical libraries in Q&A
discussions - Incorporating relational and categorical knowledge into
word embedding,” in IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering, SANER 2016, Suita, Osaka,
Japan, March 14-18, 2016 - Volume 1. IEEE Computer Society, 2016,
pp. 338–348.

[23] D. Kavaler, A. Trockman, B. Vasilescu, and V. Filkov, “Tool choice
matters: JavaScript quality assurance tools and usage outcomes in
GitHub projects,” in Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019. IEEE / ACM, 2019, pp. 476–487.

[24] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, and E. Shihab,
“Why do developers use trivial packages? An empirical case study on
npm,” in Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2017, Paderborn, Germany, Septem-
ber 4-8, 2017. ACM, 2017, pp. 385–395.

[25] A. Pano, D. Graziotin, and P. Abrahamsson, “Factors and actors leading
to the adoption of a JavaScript framework,” Empir. Softw. Eng., vol. 23,
no. 6, pp. 3503–3534, 2018.

[26] L. Yin and V. Filkov, “Team discussions and dynamics during DevOps
tool adoptions in OSS projects,” in 35th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2020, Melbourne,
Australia, September 21-25, 2020. IEEE, 2020, pp. 697–708.

[27] Y. Ma, A. Mockus, R. Zaretzki, R. V. Bradley, and B. C. Bichescu,
“A methodology for analyzing uptake of software technologies among
developers,” IEEE Trans. Software Eng., vol. 48, no. 2, pp. 485–501,
2022.

[28] Y. Huang, C. Chen, Z. Xing, T. Lin, and Y. Liu, “Tell them apart:
Distilling technology differences from crowd-scale comparison discus-
sions,” in Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, ASE 2018, Montpellier, France,
September 3-7, 2018. ACM, 2018, pp. 214–224.

[29] R. E. Hajj and S. Nadi, “LibComp: An IntelliJ plugin for comparing
Java libraries,” in ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020. ACM, 2020,
pp. 1591–1595.

[30] T. Winters, T. Manshreck, and H. Wright, Software Engineering at
Google: Lessons Learned from Programming over Time. O’Reilly
Media, 2020.

[31] Sonatype, Inc. (2021, January) State of the software supply
chain. [Online]. Available: https://www.sonatype.com/resources/
state-of-the-software-supply-chain-2021

[32] S. Raemaekers, A. van Deursen, and J. Visser, “Semantic versioning and
impact of breaking changes in the Maven repository,” J. Syst. Softw., vol.
129, pp. 140–158, 2017.

[33] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “How
the Apache community upgrades dependencies: An evolutionary study,”
Empir. Softw. Eng., vol. 20, no. 5, pp. 1275–1317, 2015.

[34] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE 2017, Urbana, IL, USA, October 30 -
November 03, 2017. IEEE Computer Society, 2017, pp. 84–94.

[35] M. Alfadel, D. E. Costa, E. Shihab, and M. Mkhallalati, “On the use
of Dependabot security pull requests,” in 18th IEEE/ACM International
Conference on Mining Software Repositories, MSR 2021, Madrid, Spain,
May 17-19, 2021, 2021, pp. 254–265.

[36] R. He, H. He, Y. Zhang, and M. Zhou, “Automating dependency updates
in practice: An exploratory study on GitHub Dependabot,” CoRR, vol.
abs/2206.07230, 2022.

[37] J. Henkel and A. Diwan, “CatchUp!: Capturing and replaying refac-
torings to support API evolution,” in 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis,
Missouri, USA. ACM, 2005, pp. 274–283.

http://www.modulecounts.com/
http://www.modulecounts.com/
https://mvnrepository.com/
https://www.npmjs.com/
https://pypi.org/
https://octoverse.github.com/#top-languages-over-the-years
https://octoverse.github.com/#top-languages-over-the-years
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021
https://www.sonatype.com/resources/state-of-the-software-supply-chain-2021


[38] K. Huang, B. Chen, L. Pan, S. Wu, and X. Peng, “REPFINDER: Finding
replacements for missing APIs in library update,” in 36th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2021, Melbourne, Australia, November 15-19, 2021. IEEE, 2021, pp.
266–278.

[39] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu, Z. Zhu,
and S. Cheung, “Do the dependency conflicts in my project matter?”
in Proceedings of the 2018 ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA,
November 04-09, 2018. ACM, 2018, pp. 319–330.

[40] Y. Wang, M. Wen, Y. Liu, Y. Wang, Z. Li, C. Wang, H. Yu, S. Cheung,
C. Xu, and Z. Zhu, “Watchman: Monitoring dependency conflicts for
Python library ecosystem,” in ICSE ’20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020.
ACM, 2020, pp. 125–135.

[41] K. Huang, B. Chen, B. Shi, Y. Wang, C. Xu, and X. Peng, “Interactive,
effort-aware library version harmonization,” in ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, Virtual Event, USA, Novem-
ber 8-13, 2020, 2020, pp. 518–529.

[42] J. Wang, L. Li, and A. Zeller, “Restoring execution environments of
Jupyter notebooks,” in 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 2021, pp. 1622–1633.

[43] S. Mukherjee, A. Almanza, and C. Rubio-González, “Fixing dependency
errors for python build reproducibility,” in ISSTA ’21: 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
Virtual Event, Denmark, July 11-17, 2021. ACM, 2021, pp. 439–451.

[44] L. Barbosa and A. C. Hora, “How and why developers migrate Python
tests,” in IEEE International Conference on Software Analysis, Evolution
and Reengineering, SANER 2022, Honolulu, HI, USA, March 15-18,
2022. IEEE, 2022, pp. 538–548.

[45] M. Islam, A. K. Jha, and S. Nadi, “PyMigBench and PyMigTax: A
benchmark and taxonomy for Python library migration,” CoRR, vol.
abs/2207.01124, 2022.

[46] T. T. Bartolomei, K. Czarnecki, R. Lämmel, and T. van der Storm,
“Study of an API migration for two XML apis,” in Software Language
Engineering, Second International Conference, SLE 2009, Denver, CO,
USA, October 5-6, 2009, Revised Selected Papers, ser. Lecture Notes in
Computer Science, vol. 5969. Springer, 2009, pp. 42–61.

[47] T. T. Bartolomei, K. Czarnecki, and R. Lämmel, “Swing to SWT and
back: Patterns for API migration by wrapping,” in 26th IEEE Interna-
tional Conference on Software Maintenance (ICSM 2010), September
12-18, 2010, Timisoara, Romania. IEEE Computer Society, 2010, pp.
1–10.

[48] C. Teyton, J. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in 20th Working Conference on
Reverse Engineering, WCRE 2013, Koblenz, Germany, October 14-17,
2013, 2013, pp. 192–201.

[49] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “On the use of information
retrieval to automate the detection of third-party Java library migration at
the method level,” in Proceedings of the 27th International Conference
on Program Comprehension, ICPC 2019, Montreal, QC, Canada, May
25-31, 2019, 2019, pp. 347–357.

[50] C. Chen, Z. Xing, Y. Liu, and K. O. L. Xiong, “Mining likely
analogical APIs across third-party libraries via large-scale unsupervised
API semantics embedding,” IEEE Trans. Software Eng., vol. 47, no. 3,
pp. 432–447, 2021.

[51] H. He, Y. Xu, X. Cheng, G. Liang, and M. Zhou, “MigrationAdvisor:
Recommending library migrations from large-scale open-source data,”
in 43rd IEEE/ACM International Conference on Software Engineering:
Companion Proceedings, ICSE Companion 2021, Madrid, Spain, May
25-28, 2021. IEEE, 2021, pp. 9–12.

[52] M. Lamothe, Y. Guéhéneuc, and W. Shang, “A systematic review of
API evolution literature,” ACM Comput. Surv., vol. 54, no. 8, pp. 171:1–
171:36, 2022.

[53] J. Katz, “Libraries.io Open Source Repository and Dependency
Metadata,” Jan. 2020. [Online]. Available: https://doi.org/10.5281/
zenodo.3626071

[54] G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data from a fire-
hose,” in 9th IEEE Working Conference of Mining Software Repositories,
MSR 2012, June 2-3, 2012, Zurich, Switzerland. IEEE Computer
Society, 2012, pp. 12–21.

[55] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, “A large-
scale study about quality and reproducibility of Jupyter notebooks,” in
Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, 2019, pp.
507–517.

[56] Y. Cao, L. Chen, W. Ma, Y. Li, Y. Zhou, and L. Wang, “Towards better
dependency management: A first look at dependency smells in python
projects,” IEEE Transactions on Software Engineering, 2022. [Online].
Available: https://doi.org/10.1109/TSE.2022.3191353

[57] S. Bird, “NLTK: The natural language toolkit,” in ACL 2006, 21st
International Conference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguistics, Proceedings
of the Conference, Sydney, Australia, 17-21 July 2006. The Association
for Computer Linguistics, 2006.

[58] M. Grootendorst, “BERTopic: Neural topic modeling with a class-based
TF-IDF procedure,” CoRR, vol. abs/2203.05794, 2022.

[59] K. Krippendorff, “Computing krippendorff’s alpha-reliability,” 2011.
[60] https://github.com/fusionjs/fusionjs/commit/bfd76bb.
[61] https://github.com/quiltdata/t4/commit/97798e7.
[62] https://github.com/CloudBotIRC/CloudBot/commit/f824322.
[63] https://github.com/CasperGN/ActiveDirectoryEnumeration/commit/

b5a2f99.
[64] https://github.com/livecoders/website/issues/100.
[65] https://github.com/mknx/smarthome/commit/5a272ab.
[66] https://github.com/Kaetram/Kaetram-Open/commit/26598ef.
[67] https://github.com/DualSpark/cloudformation-environmentbase/commit/

d9c06cf.
[68] https://github.com/WhatsApp/WADebug/commit/ded87cb.
[69] https://github.com/fabric8io/fabric8/commit/a2330a1.
[70] https://github.com/Discord4J/Discord4J/commit/9dec9b9.
[71] https://github.com/manshar/manshar/commit/9eb0a3e.
[72] https://github.com/Roxxers/roxbot/commit/776585c.
[73] https://github.com/theotherp/nzbhydra2/commit/76b33c7.
[74] https://github.com/mathics/Mathics/commit/915daeb.
[75] https://github.com/opendaylight/aaa/commit/679bb6d.
[76] https://github.com/FredKSchott/create-snowpack-app/pull/174.
[77] https://github.com/migtavares/owmClient/commit/1e42454.
[78] https://github.com/NodeBB/NodeBB/commit/a00f1f9.
[79] https://github.com/netty/netty/commit/96d5968.
[80] https://github.com/themill/wiz/commit/ba2bf7f.
[81] https://github.com/hazelcast/hazelcast-simulator/commit/9ec60be.
[82] https://github.com/hibtc/cpymad/commit/cad4f01.
[83] https://github.com/openstack-archive/almanach/commit/e056127.
[84] https://github.com/ashleyj/aura/commit/0e0e589.
[85] L. Yan, M. Kim, B. Hartmann, T. Zhang, and E. L. Glassman, “Concept-

annotated examples for library comparison,” in The 35th Annual ACM
Symposium on User Interface Software and Technology, UIST 2022,
Bend, OR, USA, 29 October 2022 - 2 November 2022, M. Agrawala,
J. O. Wobbrock, E. Adar, and V. Setlur, Eds. ACM, 2022, pp. 65:1–
65:16. [Online]. Available: https://doi.org/10.1145/3526113.3545647

[86] F. R. Côgo, G. A. Oliva, and A. E. Hassan, “Deprecation of packages
and releases in software ecosystems: A case study on NPM,” IEEE
Trans. Software Eng., vol. 48, no. 7, pp. 2208–2223, 2022. [Online].
Available: https://doi.org/10.1109/TSE.2021.3055123

[87] S. Mujahid, D. E. Costa, R. Abdalkareem, E. Shihab, M. A.
Saied, and B. Adams, “Toward using package centrality trend to
identify packages in decline,” IEEE Trans. Engineering Management,
vol. 69, no. 6, pp. 3618–3632, 2022. [Online]. Available: https:
//doi.org/10.1109/TEM.2021.3122012

[88] Maven Helper. [Online]. Available: https://plugins.jetbrains.com/plugin/
7179-maven-helper

https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.5281/zenodo.3626071
https://doi.org/10.1109/TSE.2022.3191353
https://github.com/fusionjs/fusionjs/commit/bfd76bb
https://github.com/quiltdata/t4/commit/97798e7 
https://github.com/CloudBotIRC/CloudBot/commit/f824322 
https://github.com/CasperGN/ActiveDirectoryEnumeration/commit/b5a2f99 
https://github.com/CasperGN/ActiveDirectoryEnumeration/commit/b5a2f99 
https://github.com/livecoders/website/issues/100 
https://github.com/mknx/smarthome/commit/5a272ab 
https://github.com/Kaetram/Kaetram-Open/commit/26598ef 
https://github.com/DualSpark/cloudformation-environmentbase/commit/d9c06cf 
https://github.com/DualSpark/cloudformation-environmentbase/commit/d9c06cf 
https://github.com/WhatsApp/WADebug/commit/ded87cb 
https://github.com/fabric8io/fabric8/commit/a2330a1 
https://github.com/Discord4J/Discord4J/commit/9dec9b9 
https://github.com/manshar/manshar/commit/9eb0a3e 
https://github.com/Roxxers/roxbot/commit/776585c 
https://github.com/theotherp/nzbhydra2/commit/76b33c7 
https://github.com/mathics/Mathics/commit/915daeb 
https://github.com/opendaylight/aaa/commit/679bb6d 
https://github.com/FredKSchott/create-snowpack-app/pull/174 
https://github.com/migtavares/owmClient/commit/1e42454 
https://github.com/NodeBB/NodeBB/commit/a00f1f9 
https://github.com/netty/netty/commit/96d5968 
https://github.com/themill/wiz/commit/ba2bf7f 
https://github.com/hazelcast/hazelcast-simulator/commit/9ec60be 
https://github.com/hibtc/cpymad/commit/cad4f01 
https://github.com/openstack-archive/almanach/commit/e056127 
https://github.com/ashleyj/aura/commit/0e0e589 
https://doi.org/10.1145/3526113.3545647
https://doi.org/10.1109/TSE.2021.3055123
https://doi.org/10.1109/TEM.2021.3122012
https://doi.org/10.1109/TEM.2021.3122012
https://plugins.jetbrains.com/plugin/7179-maven-helper
https://plugins.jetbrains.com/plugin/7179-maven-helper

	Introduction
	Related Work
	Library Selection
	Library Version Management
	Library Migration

	Methodology
	Subjects of Study
	Libraries
	Projects

	Identifying Self-Admitted Library Migrations (SALMs)
	Overview of the Algorithm
	Extracting Dependencies
	Matching Commit Messages
	Evaluation

	Grouping Super Libraries
	Identifying Domains for SALMs
	Identifying Rationales for SALMs

	Results
	RQ1: How common are SALMs in Java/Maven, JavaScript/npm, and Python/PyPI? How do the longitudinal trends differ in the three ecosystems?
	RQ2: In what library domains do SALMs happen? How do the domains differ in the three ecosystems?
	RQ3: What are the rationales for SALMs? How do the rationales differ in the three ecosystems?
	RQ4: Are SALMs unidirectional? How does the directionality differ in the three ecosystems?

	Discussion
	Implications
	The Python/PyPI Ecosystem
	On the Development of Packaging Ecosystems

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity


	Conclusion
	Data Availability
	References

