
Open Source Software Onboarding as a University
Course: An Experience Report

Hao He∗, Minghui Zhou∗§, Qingye Wang∗, Jingyue Li†
∗School of Computer Science, Peking University, China

∗Key Laboratory of High Confidence Software Technologies, Ministry of Education, China
†Department of Computer Science, Norwegian University of Science and Technology, Norway

{heh, zhmh, wqye}@pku.edu.cn, jingyue.li@ntnu.no

Abstract—Without newcomers, open source software (OSS)
projects are hardly sustainable. Yet, newcomers face a steep
learning curve during OSS onboarding in which they must
overcome a multitude of technical, social, and knowledge bar-
riers. To ease the onboarding process, OSS communities are
utilizing mentoring, task recommendation (e.g., “good first is-
sues”), and engagement programs (e.g., Google Summer of
Code). However, newcomers must first cultivate their motivation
for OSS contribution and learn the necessary preliminaries
before they can take advantage of these mechanisms. We believe
this gap can be filled by a dedicated, practice-oriented OSS
onboarding course. In this paper, we present our experience of
teaching an OSS onboarding course at Peking University. The
course contains a series of lectures, labs, and invited talks to
prepare students with the required skills and motivate them to
contribute to OSS. In addition, students are required to complete
a semester-long course project in which they plan and make
actual contributions to OSS projects. They can either contribute
to some recommended OSS projects with dedicated mentors, or
contribute to any OSS project they prefer. Finally, 16 out of the 19
enrolled students have successfully contributed to OSS projects,
and five have retained. However, the onboarding trajectories,
final contributions, and retention outcomes differ vastly between
the two groups of students with different course project choices,
yielding lessons for software engineering education.

Index Terms—open source software, open source onboarding,
software engineering education

I. INTRODUCTION

Open Source Software (OSS) has achieved tremendous suc-
cess in the past decades with thriving projects and communi-
ties in almost all domains of science, engineering, and society.
Meanwhile, people are raising concerns about whether an OSS
project’s success can be sustained over the next decades. For
example, OpenSSL, despite being a critical component of the
whole Internet, is only maintained by two overworked and
unpaid developers (aged 46 and 59 at that time) before the
disclosure of the notorious HeartBleed vulnerability [1]. Even
for the Linux kernel, most of the maintainers are already in
their fifties or sixties and it’s really hard to find people who
are maintainers [2], [3].

To secure sustainability, OSS projects need to maintain a
healthy influx of newcomers [4], [5], but newcomer onboard-
ing can be very difficult, especially for mature OSS projects,
with technical, social, documentation, and knowledge barri-
ers [6]. To alleviate this issue, researchers and practitioners

§Minghui Zhou is the corresponding author.

have proposed strategies, guidelines, and tools for projects
to support onboarding, such as mentoring [7], task recom-
mendation [5], [8], [9], communication [10], and engagement
programs [11]. However, the flip side of the coin is much less
considered: what can we (i.e., researchers/educators) do to help
newcomers of diverse backgrounds onboard OSS? Intuitively,
newcomers need to prepare themselves with the necessary
motivation, skills, knowledge, and behavior traits, before they
can overcome the onboarding barriers and make successful
contributions to OSS. Such preparations may also encourage
their long-term commitment to OSS projects (where newcomer
retention rate is often very low (<1%) [12], [13]).

University students are an important source of OSS con-
tributors, but their knowledge and skills are often insufficient
for them to onboard and contribute effectively. Despite the
prevalence of OSS in computer science (CS) and software en-
gineering (SE) education [14]–[19], most of the effort focuses
on the utilization of OSS for other pedagogical purposes (e.g.,
teaching SE [19]). The experience of teaching OSS onboarding
in CS/SE courses is relatively scarce in the literature [20].
Previous work reports a variety of onboarding difficulties
and mistakes when students attempt to contribute [18], [19],
[21]. We believe more evidence is needed to uncover lectures,
assignments, and interventions that are helpful for cultivating
CS students into the next generation of OSS contributors.

We present our experience of teaching a course specifically
designed for OSS onboarding to students majoring in CS
or SE at Peking University. The main goal of this course
is to prepare students with the necessary preliminaries (e.g.,
software engineering skills, social abilities, and motivation)
so that they may face fewer barriers in the future when they
attempt to contribute to OSS. To meet the teaching goals, we
organize a series of lectures (for introducing the basics of OSS
development), labs (for learning OSS-related techniques, tools,
and best practices), and invited talks from OSS veterans (for
cultivating students’ motivation and awareness) throughout the
course. At the same time, the course includes a semester-long
course project in which students make contributions to OSS
projects of their choice while being assisted (and supervised)
by the professor and TAs. Grading includes the quality of
lab submissions, in-class presentations, and the significance
of their final OSS contributions.

In the 2021 Fall semester, 19 students enrolled in the course.

In the course project, they were offered two options: one
was to contribute to some recommended OSS projects with
the assistance of a dedicated mentor from each project; the
other was to contribute to any OSS project they prefer while
the professor and TAs offered (often high-level) guidance and
feedback during their onboarding trajectories. Eventually, 16
students managed to make their first contribution to some OSS
projects (the remaining three withdrew in mid-term). Their
amount of contribution varied, from bug fixes of only several
lines of changes to full-fledged new features with thousands
of lines of code. They faced the typical barriers of project
selection, task selection, communication, and technical hurdles
during the entire process. Seven out of 16 (43.75%) students
had to try out several OSS projects before making their first
contribution. Despite the difficulties, students reported that
they felt amazed by how OSS communities work, obtained a
great sense of achievement when they successfully contributed,
and learned the necessary technical and communication skills
for overcoming the onboarding barriers.

In addition, we observe that the outcome of OSS onboarding
differs significantly between students who selected to onboard
a given OSS project (i.e., the mentored group) and students
who searched and contributed to arbitrary OSS projects (i.e.,
the free group). More specifically, while students from the
mentored group managed to make more significant contribu-
tions with fewer onboarding barriers, more students from the
free group retained in their selected projects after the course.
Through our anecdotal observations, we hypothesize that such
differences may be related to their thinking patterns according
to the theory of fast and slow thinking [22]. Such differences
may indicate that although extrinsic factors (e.g., mentoring)
accelerate onboarding, it is intrinsic motivations (e.g., personal
interest) that help retention in OSS.

To summarize, this paper makes the following contributions:
• A detailed description of an OSS onboarding course

design, which can be referred to by CS/SE educators
interested in teaching OSS onboarding.

• Experience from the onboarding trajectories of students
and our lessons for SE education and OSS onboarding.

II. BACKGROUND

A. Newcomer Onboarding

Newcomers are driven by a variety of motivations to con-
tribute to OSS projects (see Von Krogh et al. [23] for a
literature review), including intrinsic motivation (i.e., ideology,
altruism, kinship, and fun), extrinsic motivation (i.e., career
and pay), and internalized extrinsic motivation (i.e., reputation,
reciprocity, own-use, and learning). For example, they can be
motivated by their desire to learn and accumulate software
development experience, their willingness to help others, or
a personal obligation of giving back to the OSS community
as a user [23]–[25]. Recently, Gerosa et al. [26] investigate
the shift of OSS contribution motivation. They find that
motivations related to social aspects become more frequent.
Although intrinsic and internalized extrinsic motivations are

still prevalent, the motivation of “scratching one’s own itch”
becomes rarer. They also discover that contributing to OSS
often transforms extrinsic motivations into intrinsic ones.

When newcomers attempt to contribute to OSS projects,
they can face a multitude of barriers. In a systematic literature
review, Steinmacher et al. [6] identify six main categories
of newcomer onboarding barriers: newcomers’ characteristics,
newcomers’ orientation, reception issues, documentation prob-
lems, technical hurdles, and cultural differences. Mendez et
al. [27] further discover that tool and infrastructure issues are
prevalent in newcomer onboarding barriers in which social and
culture factors (e.g., gender biases) are embedded .

To facilitate newcomer onboarding, researchers have pro-
posed guidelines for newcomers and project mentors [7], [10],
[28]. Even with the guidelines, it is still hard for newcomers
to locate suitable development tasks on their own. Therefore,
a series of studies investigate the good first issue mechanism
and reveal its limitations [4], [29], [30]. Approaches are also
proposed to help newcomers choose tasks by, e.g., tagging
issues’ difficulty [8], [31], or automatically recommending
“good first issues” to newcomers [5], [9], [32], [33].

B. Education for Open Source

1) Mentoring: Mentoring is a common and effective way
to help newcomers onboard and grow their competence in an
OSS project [34]. It is common for seasoned OSS developers
to serve as mentors at any point of the OSS contribution
process in which they recommend tasks, explain the code
architecture, or assist various software development activities
for newcomers. Through mentoring, mentors can help new-
comers improve communication, collaboration, and informa-
tion collection skills [34], [35]. OSS communities also offer
specialized engagement programs (e.g., Google Summer of
Code [11]) to mentor and educate students in the program.
To improve mentoring practices, researchers have investigated
various aspects of mentoring in OSS communities, including
the characterization of its impact [36], [37], barriers of men-
tors [7], strategies during mentoring process [7], [11], and
automated mentor recommendation [35], [38], [39].

2) Courses: The idea of incorporating OSS projects into
CS/SE education is not new: educators have documented
in the CS/SE education literature about their experience of
using OSS to teach software engineering [17]–[19], [21], [40],
database systems [14], software design [41], software evolu-
tion [42], object-oriented programming [43], etc. It is generally
believed that OSS projects are ideal for teaching SE-related
topics as they are easily accessible and offer opportunities for
real-world development experience. Two systematic mapping
studies [16], [44] summarize how OSS projects had been
used to facilitate students’ learning of software engineering.
However, students may encounter the typical OSS onboarding
barriers which hinder the realization of pedagogical goals [18],
[19], [21]. To alleviate the barriers, many courses opt to
provide a predefined list of OSS projects in which the teach-
ing staff has contact with [14], [17], [18], [40], [42], with
only some exceptions [19], [20]. Morgan et al. [20] describe

TABLE I: The Weekly Course Schedule

Week Lecture Assignment

1 An Overview of OSS and Its Development
2 Platforms, Tools, and Technologies for OSS Development Lab 1: Familiarizing with Git and GitHub
3 OSS Contribution Guidelines Lab 2: Knowing an OSS Project
4 Invited Talks from OSS Veterans: OSS Onboarding and Maintenance
5 Task Selection and the Good First Issue Mechanism Lab 3: OSS Task Selection
6 Course Project Opening Presentations
7 Lab Introduction: Continuous Integration (CI) & Continuous Delivery (CD) Lab 4: Configuring CI/CD Pipelines
8 Differences between Open Source and Proprietary Software Development
9 Lab Introduction: Packaging Ecosystems & Dependency Management Lab 5: Managing and Releasing Python Packages

10 Invited Talks from OSS Veterans: OSS Culture and Community
11 Course Project Mid-Term Presentations
12 Communication and Social Skills in OSS Development Lab 6: Reflection on OSS Communication
13 OSS Governance and Community Operation
14 Ongoing Challenges in OSS Sustainability: Ecosystems and Supply Chains
15 Course Project Final Presentations Project Report

two OSS development courses (in USA) which share some
similarities with our course. As a comparison, our course
is taught in a different cultural setting and our experiences
significantly differ from theirs. Tan et al. [19] propose GitHub-
OSS Fixit, an SE course project in which students select Java
OSS projects they prefer and contribute bug fixes following
eXtreme Programming (XP) practices. However, a course
project alone may be insufficient to prepare students for OSS,
as their students report many typical difficulties during OSS
onboarding. This is one of the reasons that motivated us to
design and teach a course specifically for OSS onboarding
and overcoming the OSS contribution barriers.

III. COURSE DESIGN

Compared with traditional software development, OSS de-
velopment has a new set of models and techniques. Despite the
growing importance of OSS in the industry and society, there
was a lack of relevant courses in Peking University to help
students understand the nature of OSS, master the hands-on
techniques and tools for OSS development, and learn how to
overcome the OSS onboarding barriers. These are essential for
students regardless of their career path choices (academic or
industry), as they are very likely to use, contribute to, or launch
their own OSS projects in the future. As a bonus, students
can also accumulate experiences on how to apply their CS
knowledge into real-world SE tasks through OSS development.

To teach students OSS development methods, process, and
techniques, we started a new elective course, Open Source
Software Development, mainly for senior undergraduate stu-
dents with a CS or SE major. As preliminary requirements, we
advise students to have fluency in at least one programming
language and possess some reasonable knowledge of SE. The
preliminaries are not mandatory: we believe that students of
any background can contribute to OSS in some way as long
as they are highly motivated and master the necessary skills
and knowledge that will be covered in this course.

A. The Course Schedule

The course consists of four main parts: lectures, invited
talks, lab assignments, and a course project. Table I provides

an overview of the course schedule. Note that the labs are
assigned mapping the progress of course project.

The first five weeks are designed to familiarize students
with the basics of OSS development, with a special focus
on the strategies to overcome the OSS onboarding barriers.
To this end, we cover topics including the fundamentals of
software engineering, the notion and history of OSS, common
platforms, tools, and techniques for OSS development, OSS
contribution guidelines, and OSS task selection mechanisms.
Moreover, we invite four OSS developers (all are currently
core members of different OSS projects) to give presentations
about how to onboard their OSS project and their experiences
in OSS participation and maintenance. We expect these invited
talks to provide vivid examples of real OSS development,
which can help students select OSS projects, reduce the fear
of unknown and motivate them to contribute to OSS projects.
Meantime, we design three labs for students to practice with
the knowledge learned. In Lab 1, students are asked to practice
with git and GitHub by initializing a git repository, pushing the
repository to GitHub, opening issues, forking the repository,
and contributing back to the parent repository using a PR.
In Lab 2, students are asked to choose an OSS project of
their interest, locate and read contribution documentation, and
setup the required development environment for that project.
In Lab 3, students are asked to explore possible ways to
contribute to the OSS project they choose in Lab 2. In Lab
2 and Lab 3, they are also required to produce reports to
justify their selections, describe their experiences, and report
any encountered challenges.

The remaining ten weeks are mixed with course project
arrangements, lectures about advanced topics, and two labs
covering CI/CD and dependency/release management, respec-
tively, and one lab reflecting on communication practices.
The course project is intentionally interleaved with other
lectures and labs, as we expect OSS onboarding to be a time-
consuming trial-and-error process hardly achievable in a short
duration. Details about the course project design are described
in Section III-B. There are also lectures and invited talks
designed to broaden students’ view of OSS and cover topics
that are generally beneficial to have an understanding of, such

as OSS community, culture, license, governance, sustainability
challenges, etc. Lab 4 and Lab 5 cover some increasingly
important SE topics in both open source and proprietary soft-
ware development (yet not covered by Peking University’s SE
course). In Lab 4, we introduce the topic of continuous inte-
gration (CI) and continuous delivery (CD), which is leveraged
by almost every OSS project for automated quality assurance.
In the lab assignment, we provide a small Python graph library
for which students are required to set up pre-commit hooks,
code linters, unit tests, and a CI/CD pipeline using GitHub
Action. In Lab 5, we introduce the topic of OSS packaging
ecosystems and dependency management, as we believe it is
increasing important for software developers to understand
how to select, manage, and release OSS packages, and possibly
students will practice in their course project. In the lab assign-
ment, students further implement new features in the Python
graph library with external dependencies and configure an
automated CD pipeline to release the library to TestPyPI [45],
a platform for experimenting with Python packaging. Finally,
Lab 6 is designed to give students an opportunity to write down
their own reflections on communication, for them to build
a deeper understanding of communication best practices in
OSS communities. Communication over Internet differs from
physical communication in many ways, which can be both
encouraging and challenging. Although the best practices are
already covered in the first five weeks, we expect that such an
in-depth understanding can only be built after students have
had some real experiences.

B. The Course Project

Obviously, the pedagogical goals of our OSS onboarding
course cannot be fulfilled without actual OSS onboarding and
contribution experiences. However, given the known difficul-
ties of OSS onboarding, it will be probably inappropriate to
arrange the course project in a very short duration or to ask
students to contribute to arbitrary OSS without any predefined
guidelines, processes, and interventions. On the other hand, if
we make the predefined processes too strict (e.g., contributing
to a specific OSS project), the course project would deviate
from real OSS onboarding and it would be hard to find an OSS
project that matches the background and interest of all enrolled
students. Therefore, the course project is designed to balance
structure and flexibility, in which students have freedom in
OSS project and task selection while we define (loosely) the
processes and tasks they must complete.

At the end of the first lecture, we introduce to students the
requirements and arrangements of the course project. They
are offered two options. The first option is to contribute to
a recommended list of OSS projects in which they can be
helped in person by a mentor. In the Fall 2021 semester, we
provided four OSS projects within our reach: OpenEuler [46],
Kata Containers [47], PaddlePaddle [48], and TiDB [49]; all of
their mentors also gave an invited talk in Week 4. The second
option is to contribute to any OSS project of their choice. In
this case, they must choose OSS projects and tasks according

to the following criteria (to minimize the onboarding barriers
and student pitfalls shown in prior work [6], [19], [20]):

• The project must be sufficiently popular (as a rule of
thumb, ≥100 GitHub stars) with a non-trivial user base
(e.g., a high number of downloads each week).

• The project must be actively maintained with rapid issue
response time, sustained commit activity in the past six
months, and more than ten previous contributors;

• The project should have a roadmap or an issue tracker
that provides opportunities for external contributions;

• The student must be able to set up a valid development
environment for their selected OSS projects;

• The student should try their best to align projects and
tasks with their skills, background, and personal interest;

• The student should always evaluate the workload, diffi-
culty, and risks of each task they attempt to take.

All the criteria are designed to ensure students to be able to
learn and contribute within a limited timeframe (≤10 weeks).
Although they are not enforced, students are required to
justify any deviations in the in-class presentations and we may
intervene if necessary. In Lab 2 and Lab 3, students will have
the opportunity to practice and familiarize themselves with
these project and task selection criteria. Students are allowed
to form teams but will be graded independently based on the
presentations, the final report, and the significance of OSS
contributions (more details in Section III-C).

For students choosing the first option, a WeChat group
(similar to a Slack channel) is arranged with the presence of a
mentor from their interested project. In this way, students can
directly ask questions, request good first issues, and seek help
if they encounter any technical hurdles. For students choosing
the second option, they need to find projects and tasks, learn
the necessary preliminaries, and figure out all the low-level
details on their own, all of which make the second option
inherently more challenging.

We arrange three in-class presentations (opening, mid-term,
and final) throughout the course. The presentations serve two
purposes: the first is for us to get informed of the students’
progress and intervene if necessary; the second is for students
to inspire and motivate each other through learning from
peers [20]. In the opening presentation, students need to
describe the OSS project they selected, their selection ratio-
nales, their understanding of the project (e.g., toolchains, tech
stacks, architecture, and contribution guidelines), and their
contribution plans. In the mid-term presentation, students must
present their communication and development activities, the
issues and barriers encountered, and their further contribution
plans. In the final presentations, students need to summarize
their onboarding trajectories, the final successful (and failed)
contributions, their reflections, and their lessons learned.

After the final presentation (Week 15), students need to
produce a project report as a formal document of their on-
boarding processes, successful (or failed) contributions, and
individual reflections. We expect that a formal written report
can push students to carefully reflect on their own experiences
and lessons learned so that they can avoid similar mistakes in

TABLE II: An Overview of Students and Their Contributions to OSS

ID Final Project Interactions (in GitHub) Contributions Line Changes Retention
M

en
to

re
d

G
ro

up S04 PaddlePaddle 1 PR fix (3) 430++ 176-- None

S08 PaddlePaddle 1 Issue, 3 PRs, 2 Comments feat (1) 3130++ 0-- None

S09 PaddlePaddle 2 PRs, 6 Comments feat (1) fix (1) 150++ 41-- None

S11‡ PaddlePaddle & Other(s) 1 Issue, 2 PRs, 5 Comments feat (7) fix (3) doc (1) 10782++ 4442-- Issues (in Other(s))

S12 PaddlePaddle 1 Issue, 5 PRs, 16 Comments feat (1) fix(1) 3088++ 1-- None

Fr
ee

G
ro

up

S01 Other(s) 4 PRs, 17 Comments fix (1) doc (1) 715++ 82-- None

S02∗ Other(s) 2 Issues, 2 PRs, 12 Comments feat (1) fix (1) 390++ 7-- None

S03∗ Other(s) 2 Issues, 4 PRs, 39 Comments feat (1) fix (1) doc (1) 68++ 22-- None

S05∗ Other(s) 2 PRs, 2 Comments fix (1) 8++ 8-- Issues & Commits & PRs

S06† Other(s) 3 Issues, 3 PRs, 7 Comments fix (4) 318++ 298-- Code Reviews

S07 Other(s) 4 Issues, 11 PRs, 40 Comments fix (1) doc (2) 430++ 24-- Commits & PRs

S10∗† Other(s) 2 Issues, 2 PRs, 1 Comment feat (1) doc (1) 278++ 403-- Commits & PRs

S13∗ Other(s) 2 Issues, 2 PRs, 4 Comments feat (1) doc (1) 137++ 7-- None

S14 Other(s) 4 Issues, 4 PRs, 4 Comments fix (2) 6++ 10-- None

S15∗ Other(s) 2 PRs, 4 Comments fix (4) 238++ 77-- None

S16∗ Other(s) 5 Issues, 4 PRs, 8 Comments feat (4) 1033++ 913-- None

∗ These students have switched projects during the course.
† These students already have OSS contributions prior to taking our course.
‡ We put S11 into the mentored group because he mainly contributes to PaddlePaddle.

the future. We will also use these reports as an invaluable
reference for grading and improving course design.

C. Grading

Grading is based on students’ in-class participation (10%),
lab assignments (50%), and the course project (40%). For
each lab, the lab assignments are given clear grading criteria.
We expect that the 60% of in-class participation and lab
assignments can be easily seized by students with a reasonable
amount of devotion and hardworking, to relieve their anxiety
with grades. The classes and labs are designed for learning,
not for evaluating performance after all.

The main part where the students’ grades can greatly differ
is the 40% of course project, which is composed of 15% of in-
class presentations, 15% of OSS contribution significance, and
10% of the final project report. The presentations and reports
are evaluated w.r.t. their adherence to our requirements and
their depth of thought; the OSS contributions are evaluated
with respect to the amount of work, the appropriateness of
interaction with OSS communities, and the overall difficulty
and significance levels. The acceptance of several non-trivial
contributions is needed for a full grade, but failed attempts
can still count for some grade points.

IV. STUDENT ONBOARDING TRAJECTORIES

In the Fall 2021 semester, 19 students enrolled in our
class, and we will use S01 - S19 to refer to them in this
Section. During the semester, three withdrew in mid-term
by following our university’s procedures (the withdrawal rate
was high that year due to the ongoing COVID-19 pandemic;
another possibility is that some were afraid of the difficulty

in accomplishing actual OSS contributions). We provide an
overview of the remaining 16 students and their contributions
in Table II. We refer to students who choose to contribute
to our given OSS projects with the help of the mentor as the
mentored group and students who locate OSS projects on their
own as the free group (Section III-B).

In this Section, we will describe: 1) students’ projects &
tasks selection, 2) their interactions with OSS communities,
3) their contribution outcomes, 4) their own reflections, and
5) their retention in OSS. The results come in part from
a thematic analysis [50], [51] of their presentations, lab
submissions, and project reports, and in part from our own
observations. Where appropriate, we also include (translated)
quotations to support our observations.

A. Project and Task Selection

We provided the following interventions before students
chose their OSS projects and tasks. In the lectures of Week
3 and Week 5, we explained in detail the rationales and the
common pitfalls behind our provided project and task selection
criteria. In Week 4, the talks covered processes, guidelines, and
contribution opportunities for each invited project. Students
were given opportunities to practice with the typical project
and task selection processes in Lab 2 and Lab 3, respectively.
To understand the effectiveness of the interventions, in the
opening presentations and the project reports, students were
asked to document their choices and the considerations behind
their choices.

1) Project Selection: Five students opted for option one
(i.e., the mentored group) and 14 students opted for option
two (i.e., the free group, among which three withdrew from the

TABLE III: Students’ Considerations during Project Selection

of Students
Theme Mentored Free All

Alignment 5 (100%) 14 (100%) 19 (100%)
Skill 1 (20%) 10 (71%) 11 (58%)
Personal Interest 4 (80%) 4 (29%) 8 (42%)
Experience as User 0 (0%) 7 (50%) 7 (37%)
Perceived Ability 2 (40%) 2 (14%) 4 (21%)

Community 4 (80%) 10 (71%) 14 (74%)
Active 2 (40%) 9 (64%) 11 (58%)
Newcomer Friendly 4 (80%) 6 (43%) 10 (53%)
Welcome External Contribution 2 (40%) 2 (14%) 4 (21%)

Project 3 (60%) 8 (57%) 11 (58%)
Low Contribution Barrier 2 (40%) 5 (36%) 7 (37%)
High Quality 1 (20%) 3 (21%) 4 (21%)

Intrinsic Motivation 0 (0%) 1 (7%) 1 (5%)

course). All students in the mentored group chose PaddlePad-
dle. In contrast, students from the free group selected OSS
projects of high diversity (in terms of programming language,
application domain, size, complexity, and maturity).

We provide a summary of their justifications in Table III.
As expected, all students (19, 100%) mention the alignment of
OSS projects with their specific skills (11, 57.9%), interest (8,
42.1%), user experience (7, 36.8%), and perceived ability (4,
21.1%). In terms of skills, students generally wish to onboard
OSS projects that align well with their familiar programming
languages and application domains. For example, S05 men-
tions that: Because I am doing research on computer vision
and deep learning, and I am mainly programming in Python
and PyTorch for object detection, I would like to participate in
deep learning projects and projects mainly written in Python.
Besides, their personal interest also plays an important role
and many wish to contribute to the OSS that they had some
experiences as a user. As stated by S06: My main interests are
data science, quantitative finance, and blockchain, so I would
like to contribute to software libraries in this domain that I
like and I use a lot. Finally, some care whether the project is
“not too difficult” for their current ability.

The majority (14, 73.7%) of students also care about
whether the corresponding OSS community has a benign at-
mosphere and is capable to support their onboarding. The most
frequently mentioned community attributes are activity (11,
57.9%) and newcomer friendliness (10, 52.6%). For example,
S03 mentions: If a community can respond to my questions
quickly, the chance of my contribution getting accepted is
much higher. S17 notes: My selection criteria for OSS projects
is that they should have a healthy community willing to
accept contributions and offer help to newcomers. Ideally,
they should signal that through the labeling of “good first
issues.” Some students mention whether the project is willing
to accept external contributions (4, 21.1%) as an additional
factor because some projects only “seem to be open-source”
but actually harder to contribute as an outsider.

Certain characteristics of the software projects themselves
are also frequently considered (11, 57.9%). In general, some
students (7, 36.8%) care about whether the project seems to

have low contribution barriers and some students care about
whether the project is of high quality (4, 21.1%). For the
former case, students expect 1) they can easily set up a
development environment for the projects they onboard; 2)
the projects are in rapid development and need contribution; 3)
the projects they onboard are of small size, well documented,
and have high modularity. For the latter case, they wish the
projects they onboard are among the “prestigious” ones that
are mature, impactful, sustainable, and well-maintained.

Only S06 has mentioned intrinsic motivation of contribut-
ing, including the eagerness to improve and seeking chal-
lenges, as noted: I am eager to improve the project ...Using
QML to compose graphic interfaces is not only outstandingly
effective but also a good challenge.

The students’ reports reflect that they have learned well
about the rationales for OSS project selection. In terms
of the justifications, differences between the mentored and
free groups are small. The free group focuses more on the
alignment of skills (71%) compared with the mentored group
(20%); the mentored group focuses more on newcomer friend-
liness (80%) compared with the free group (43%).

It is surprising for us to find that all students in the mentored
group choose PaddlePaddle while the other three projects are
not chosen at all. Through our inquiries, it turns out that these
students are generally more interested in and familiar with
deep learning, and they think that projects related to operating
systems, cloud computing, and database are too “hardcore”
for their current programming ability and expertise. This can
be an example of the mere exposure effect [52], [53] under
the availability heuristic [54], that they immediately prefer
PaddlePaddle because they are familiar with AI and consider
PaddlePaddle as “the easier choice” for them (Table III). For
some students in the mentored group, we conjecture that
they choose to be mentored mainly because they are less
intrinsically motivated compared to students in the free group
(i.e., they only want to earn credits with ease instead of facing
the unknown and overcoming difficulties).

2) Task Selection: Similar to project selection, we sum-
marize student common considerations for task selection in

TABLE IV: Students’ Considerations during Task Selection

of Students
Theme Mentored Free All

Preferred Task Type 5 (100%) 13 (93%) 18 (95%)
Bug Fix 2 (40%) 7 (50%) 9 (47%)
Good First Issue 0 (0%) 6 (43%) 6 (32%)
Feature 5 (100%) 1 (7%) 6 (32%)
Documentation 0 (0%) 3 (21%) 3 (16%)
Test 0 (0%) 3 (21%) 3 (16%)
Other 1 (20%) 2 (14%) 3 (16%)

Task Selection Strategy 0 (0%) 10 (71%) 10 (53%)
Scratch One’s Own Itch 0 (0%) 4 (29%) 4 (21%)
Start from Easy to Difficult 0 (0%) 4 (29%) 4 (21%)
Limited Change Scope 0 (0%) 2 (14%) 2 (11%)
Reproducible Bug 0 (0%) 1 (7%) 1 (5%)
Has Reference Implementation 0 (0%) 1 (7%) 1 (5%)
Recent Task 0 (0%) 1 (7%) 1 (5%)

Table IV. Almost all students (18, 94.74%) have a specific task
type in mind when they locate their initial tasks and over a half
(10, 52.63%) explicitly mention their task selection strategies.

We notice a huge difference between the two groups. The
mentored group preferred more on implementing new features,
while the free group preferred to begin with easier tasks (e.g.,
bug fixes, good first issues, writing documentation, testing,
etc). Only the free group mentioned task selection strategies.
The differences come from the fact that the mentored group
can often quickly propose or get assigned a task by their
mentor (e.g., implementation of a state-of-the-art deep learning
model). On the other hand, the free group is faced with much
more challenges in finding a starting task that aligns well with
their past experiences. For this purpose, they need to apply
various task selection strategies, such as 1) search for bug
fixes that scratch their own itch (i.e., they have encountered
the same bug during their use of the OSS); 2) begin with easy
tasks to familiarize themselves with the development process
and increase their ability for more difficult tasks, 3) solve
reproducible, recent issues with a limited change scope, etc.

3) The Switch of Projects and Tasks: However, even with
those considerations, project and task selection is still prone to
fail for the free group. In the mid-term presentation, seven out
of 11 (63.6%) students reported that they have abandoned the
initial projects and seek to find contributions to other projects.
Among them, six mentioned their reasons: hard to find tasks
(S02 and S15), lack response (S10 and S16), lack ability S13),
and failure to setup a working development environment (S03).

S02 and S15 found that locating suitable tasks to work on
can be difficult and the “low-hanging fruits” may be easily
preempted by others. For example, S02 wanted to contribute to
pandas [55] but eventually concluded that it is already highly
mature and he could not find anything to work with.

S10 and S16 switched because they did not receive timely
feedback from project maintainers due to their inactivity or
reluctance to help. S10 notes: Some projects have a low main-
tenance frequency and your issue may stay unresponded for
several months; S16 mentions that: I did all things requested
by the contribution guidelines and encountered issues, but
nobody replies to me and helps me.

S13 found his selected projects and tasks were beyond his
current ability. This was common among students because they
were still learning and yet to be software professionals. As
noted: Selecting open-source projects is very hard because I
do not have the ability to contribute to those I use and it is
difficult to contribute to those that I do not use.

For S03, his initial selection was blocked by development
environment setup, as mentioned: most of the bug reports in
[an IoT Application] need non-trivial hardware configuration
to replicate.

B. Communication and Interactions

In Fall 2021, we included communication related topics in
two lectures (Week 3 and Week 12). In Week 3, we provided a
brief coverage of common means for communication (issues,
PRs, mailing lists, etc.) and best practices on how to work with

OSS communities. In Week 12, we revisited the topic with in-
depth discussions, taking the Linux Kernel and several studies
as examples, to show what should be expected and what should
be avoided when interacting with OSS communities. Through
our teaching, we expect students to be equipped with some
knowledge about communication in OSS communities. To
evaluate these teaching activities, in the three presentations,
students were requested to report their communication activ-
ities and we provided feedback where necessary. We report
their communication activities in this Section.

Students used various means for communication, among
which the most frequently used is GitHub issues (mentioned
by 13 students). The less frequent ones include mailing lists
(six students), Slack channels (three students), user forums
(three students), Twitter (two students), Stack Overflow (two
students), and WeChat Groups (two students).

We summarize the effort of communication spent by the
two groups of students, respectively, as shown in Table V. We
can observe that the mentored group has more opened issues
and pull requests, indicating that they may be more focused
on task-related communication. Most of their communication
is straightforward because they have already been told by their
mentor about what to do for their assigned tasks. On the other
hand, the free group has more comments and significantly
more words in their issue/PR bodies (9.4x) and comments
(5.6x) than the mentioned group. This is probably because they
have spent much more effort in locating tasks, communicating
with other developers to figure out what they should do,
and may iteratively refine their contribution according to the
maintainers’ requests.

Communicating with strangers in OSS community is mostly
a new experience for our students. Therefore, we encouraged
them to communicate bravely and actively, especially when
they were struggling at certain aspects. This turned out to
be beneficial for both task selection and getting contributions
accepted. For example:

1) When having no idea how to contribute, students explic-
itly asked for good first issues. For example, S07 commented
in an issue: I am new to the community of [OSS Name] and
I really want to contribute to the project of [OSS Name].
Are there any suitable issues to start with right now? This
comment was replied: Thanks for the enthusiasm. We have a
similar issue at the [OSS Name] repository. You may find the
issues that fit your interests here [issue link].

2) When interested in a certain issue or task, students
expressed their interest to be assigned by project maintainers,
boosting their motivation to contribute. For example, S11

TABLE V: Communication Effort in Different Groups (Mean).

Metric Mentored Free All

of Issues 2.00 1.55 1.68
of PRs 4.40 2.81 3.31
of Comments 10.09 11.20 10.43
Issue/PR Body Length 10.56 99.59 79.56
Comment Length 22.76 128.17 102.48

commented on an issue: Is the feature being implemented? If
not, I’m willing to give it a try. He was answered with: please
go ahead with your plans. This will be greatly appreciated.

3) When implementing complex features, students discussed
with community before implementing. For example, S11 pro-
posed an issue to discuss what he/she wants to contribute (a
multi-label classification feature). He/she then further opened
an implementation PR after the proposal is approved.

4) If there was no response from reviewers, students sent
reminder messages asking for comments on their issues or
code reviews for their PRs. For example, S16 commented “can
anyone take a look at this?” after his PR was delayed for four
days. The PR was merged the next day after his reminder.

5) If the contributions were questioned by reviewers, some
students were persistent and eager to defend their contribu-
tions. The example of S01 especially impressed us: when
he opened a PR for translating documentation, a reviewer
replied: ...It failed to meet our criteria for documentation. We
cannot accept unedited machine translations... He insisted on
improving the PR despite the discouraging reply (he was not
machine translating, just not proficient enough in the target
language). The PR eventually got merged after several rounds
of improvements. The use of polite terms like thanks for your
help, thanks, my pleasure, sorry for the late response, etc., can
help in winning assistance from core maintainers.

However, we also observed some (unexpected) communica-
tion problems from some students, which brought a negative
impact on their onboarding process. One especially prevalent
problem was the inappropriate use of English (e.g., broken
sentences, abbreviations of non-English terms), which in part
caused unwelcoming receptions. There were also cases where
students did not follow the project contribution process and
issue templates, causing their issues to be closed. Some stu-
dents gave up on their contributions entirely when challenged
or requested changes by the project maintainers.

C. Contribution Outcomes

All students have successfully contributed to at least one
OSS project and their contribution status is summarized in
Table II. In total, they submit 51 contributions among which
46 have been accepted and merged into the main branch.
Their contributions fall in three categories: implementing new
features (feat), fixing bugs (fix), and improving docu-
mentation (doc). The size of their contribution significantly
varies, ranging from merely changing one line of code to
huge patches with thousands of lines of changes. For example,
the first successful OSS contribution of S03 is to improve a
warning message to make it less confusing to users, which
only requires one line of change to the corresponding string
literal. In the other extreme, several students (S09, S11,
S12) contribute state-of-the-art models to PaddlePaddle which
require thousands of lines of changes to implement. The five
non-accepted contributions happen due to re-submissions of
PRs (two cases), issue preemption (one case), project inactivity
(one case), and student giving up to contribute (one case).

feat (8, 61.54%)

fix (5, 38.46%)

Contributions to PaddlePaddle

fix (18, 54.55%)
feat (8, 24.24%)

doc (7, 21.21%)

Contributions to Other OSS Projects

Fig. 1: Distribution of Task Type in the Two Groups

Both the quantity of change and the distribution of task
type differ significantly between the two groups. As shown
in Figure 1, the mentored group mainly contributes to Pad-
dlePaddle with implementations of new features, with a much
higher number of changed files and added lines (see Table II).
Contributions by the free group are mainly bug fixes, with
some new feature implementation and some documentation
improvement. In general, the mentored group makes contri-
butions of a much bigger size and a higher amount of work.
And the free group presents a diversity in terms of the tasks
and projects.

We conjecture that the differences between the mentored
and free group in their OSS contribution outcomes are due to
three main reasons. First, the presence of mentorship plays
a strong factor. The mentor (one of PaddlePaddle’s core
members) communicated directly with students via instant
message to answer any questions from students. He also
offered guidance on how to propose a major feature (e.g., a
new state-of-the-art model) and follow project conventions.
This encouraged students to try bigger tasks (without the fear
of mistakes or rejection). Second, authentic demonstrations
of successful contributions (i.e., a role model) encouraged
students to try bigger tasks. For the mentored group, S11 was
such a role model: he had not only submitted many PRs but
was also actively helping others when they are struggling to
contribute. Finally, the free group had spent much more (and
often) invisible effort on selecting projects & tasks, learning,
and developing their own motivations for OSS contribution.
Having made less significant contributions does not necessarily
mean that students in the free group have spent less effort or
learned less from their experiences. They may benefit more in
the long run.

D. Students’ Reflection

In the project reports, we ask students to reflect on their own
experiences. We identify common themes in their reflections
through a thematic analysis of their reflections, as shown in
Table VI.

1) Students’ Positive Feedback: We are impressed to find
out that students feel highly positive about the unique experi-
ences brought by our course.

Students mention that they feel a strong sense of achieve-
ment after they manage to make contributions to an OSS
project. As noted by S04: I really thank this course, which
helps me experience the charm of participating in open source

and I really like maintaining open source projects. When I
successfully solve problems for someone else, I feel a great
sense of achievement and happiness.

Another frequently mentioned feedback is that they are im-
pressed with how warm and welcoming OSS communities are
compared with other online communities. For example, S05
notes: Open source communities are very friendly...Everyone
is smart, speaks nicely, and is very helpful. This is very touch-
ing in a world where the Internet is becoming increasingly
polarized and even hostile. S15 also notes: People from the
open source community are very passionate and polite.

Some students once thought that GitHub is just a place
where you can get software “for free”; they had no idea how
open source works and why such a model can incubate great
software. Now, they realize the complexity and charm behind.
As noted by S05: Hosting an open-source project is more than
simply adding a license to your code and putting it online. You
need to spend a lot of energy writing documentation, orga-
nizing files, communicating, and enhancing the compatibility
and robustness of your code; and S16: I am impressed how
a group of people who have even not met each other can
start a heated discussion and contribute...From my perspective,
open-source is more than a sort of license or development
model. It is an open mindset where you respect everyone, trust
newcomers, appreciate and value others’ opinions, sharing a
common goal, and a common vision.

2) Challenges Encountered: Even under a structured course
setting, they still encounter onboarding challenges and bar-
riers. In their reports, they documented and reflected on the
challenges they had encountered and how they overcome them.

The most frequently reported challenge is Communication.
Students find it hard to properly seek help, ask questions,
use English properly, etc. For example, project maintainers
refuse to help S01 when S01 asks a question without trying
to read project documentation or investigating by himself. S05
notes: I feel my English is weak and need to think twice on
how to communicate without causing confusions, especially for
technical terms and expressions. In their reflections, they con-
clude many lessons on effective communication. For example,
S02 concludes: You need to have a sufficient understanding of
the project before asking questions and communicating with
others. They will not treat you as a student but an independent
professional. You need to learn a lot from project documen-

TABLE VI: Students’ Reflections after the Course

of Students
Theme Mentored Free All

Positive Feedback 2 (40%) 3 (27%) 5 (26%)
OSS Communities are Welcoming 1 (20%) 2 (18%) 3 (19%)
Sense of Achievement 1 (20%) 1 (9%) 2 (13%)
OSS is Non-Trivial 0 (0%) 2 (18%) 2 (13%)

Challenges Encountered 2 (40%) 8 (73%) 10 (63%)
Communication 1 (20%) 5 (45%) 6 (38%)
Project & Task Selection 0 (0%) 4 (36%) 4 (25%)
Environment/Process/Tool Usage 2 (40%) 2 (18%) 4 (25%)
Life Lessons 1 (20%) 2 (18%) 3 (19%)

tation by yourself...You should not underestimate yourself and
be brave to communicate. S03 notes: You should be active
and show a good attitude. Try your best to help developers
understand what you are doing, and sometimes it will help to
directly tell them you are new to their project.

Many students also report Project & Task Selection as their
main onboarding challenge. For example, S07 notes: [project
name] is highly mature and if you want to contribute to such a
community, you need to find bugs and improvement directions
from your own specific applications. S10 concludes: Selecting
an open source project is not easy: your initial explorations for
“intentionally seeking contributions” cannot progress, while
some unexpected problems can trigger interactions with the
open-source community and get positive feedback. In retro-
spection, they realized the necessity to have a strong personal
interest in an OSS project and focus more on the process
instead of deliberately seeking outcomes, doing good deeds
without asking for reward. Even if many initially failed to
contribute to some projects, they acknowledge that they have
accumulated experiences throughout their trials-and-errors.

Environment, Process, and Tool Usage also pose barriers to
students. Even with the courses covering common tools and
processes, each OSS project may use a different toolchains
and process. The perfectionism of renowned OSS projects
also pose challenges to many students. Consequently, they still
need to learn a large amount of new knowledge and get into
unexpected failures, before figuring out the right path to do
everything. Although the process is painful, in the aftermath,
they begin to understand software development in the real
world. For example, in terms of development environment, S05
realizes: Software needs to run on diverse OS, environment,
devices, and in different people, which makes the problem
really complex. You will never imagine how a program can
come with all kinds of problems in other people’s device. S04
also writes: I learn to always check twice before submitting a
PR and follow community conventions closely to ensure there
will be no unexpected problems.

Through their experiences of OSS participation, students
realize the importance of having a strong interest and passion
for what they do, being brave and resilient, and focusing more
on the experience instead of the outcome. For example, S02
writes: Do not mistake desire for passion and do what you
really want to do, and S13 notes: Through the process of “gold
washing,” I have learned many things and tried a lot. Even if I
may not really do it, at last, everything I learn in this process
is invaluable, from the first build to the last contribution.

E. Retention in OSS

Six months later, we observe further OSS contributions
from five students (Table II). Their contributions include issue
reporting, bug fixes, and code reviews. However, their quantity
of post-course contribution is still minor. Whether they will
remain as long-term contributors is still yet to be seen.

Two students have started their own OSS projects and both
of them have achieved a noticeable impact. S05 created a
utility app for students at Peking University to automatically

submit COVID-19 health monitoring information. At the time
of writing, it has 173 commits, 179 stars, five external con-
tributors, and a healthy stream of issue reports. S10 created
and maintained a custom build for a not actively maintained
software distribution to include the latest version of compilers
in it. This custom build attracted a number of users and earned
15 stars before the official build begins to update recently.

Interestingly, although the mentored group has larger con-
tributions, none of them remain in PaddlePaddle after the
course. This is quite alarming, indicating that although close
mentoring helps them make more significant contributions, it
may not be sufficient for retaining newcomers. They may be
overly focused on code implementation and have learned less
about OSS participation and intrinsic motivations.

V. LESSONS LEARNED

In terms of the OSS contribution outcomes, students’ reflec-
tions, and their retention, we consider our course as mostly a
success. Students report to have increased their ability in sev-
eral dimensions: communication, social behaviors, technical
skills, problem solving, ways of thinking, etc.

The main complaint about our course is grading: students
report that the opaqueness of grading criteria increased their
anxiety about grades in the course project. In general, students
are highly concerned about their GPA, and many set GPA-
oriented goals in their courses, but the outcome of OSS on-
boarding is inherently unpredictable. Moreover, we refrained
from providing detailed grading criteria beforehand in Fall
2021 to prevent students from overfitting the criteria. This, in
hindsight, turned out to cause anxiety and reluctance to choose
challenging projects and tasks among some students. To bal-
ance between fair grading and students’ learning achievement,
we decide to disclose the detailed grading criteria at the
beginning of the course in Fall 2022 with more emphasis on
the effort and process than on the contribution outcome. We
also advise students to set learning-oriented goals to maximize
their gain. The impact of these improvements is yet to be seen.

Even in a structured and guided setting, students still report
many technical and social barriers during their onboarding.
For some of the barriers with project & task selection, tools,
and communication, we believe this can be further addressed
by better-designed hands-on lab assignments. However, as also
pointed out by Morgan et al. [20], a significant amount of self-
directed learning is inevitable during OSS onboarding (e.g., on
project-specific tools) and it is impossible to cover everything
in a course. Instead, it is vital for an OSS onboarding course
to cover “the philosophy of learning” (i.e., learning how to
self-learn) in the context of OSS development.

For reducing the social barriers, apart from teaching best
practices, we could have done better by telling students to
expect criticism from the OSS community and handle them
correctly. We could also provide vivid examples of past
successes and failures (ideally, from past students) to help
them set proper expectations and be more mentally ready for
possible challenges. That is exactly what we did in the Fall
2022 semester.

We are especially concerned with the fact that students from
the mentored group are less likely to remain in OSS compared
with students in the free group. Through our observations, we
hypothesize that the choice of being mentored or not is related
to their thinking patterns: the mentored group is more tempted
to behave with “fast thinking” while the free group more often
applies “slow thinking” deliberately. According to psychology
research [22], the human mind has two thinking systems: “fast
thinking” and “slow thinking”. The former is fast, instinctive,
and emotional while the latter is deliberative and logical. All
of us possess both systems and we may be affected by either
one in decision-making and problem-solving, in which “fast
thinking” works autonomously and deliberate attention and
effort are needed to activate the “slow thinking” system.

For some students in the mentored group, they may be
affected by intuitive heuristics from their prior experience [54]
(which is a typical pattern of “fast thinking”), causing them
to replace the challenging problem of “what should I do to
contribute to an OSS project?” with an easier one: “can I
quickly write some code within my expertise so that I can
earn good grades with minimum effort?” The latter option
becomes possible with the presence of an extremely friendly
mentor from PaddlePaddle, who basically removed all typical
onboarding barriers and enable students to focus entirely on
implementation (using their knowledge in deep learning). It
is questionable whether they really learned the sufficient key
aspects of OSS development from our course.

On the contrary, we observe some typical patterns of “slow
thinking” from the free group: students often deliberately,
rationally, and logically think about the potential solutions to
challenging problems, overcoming the heuristics and biases
induced by “fast thinking.” When the reception from project
maintainers does not go well or they are faced with a daunting
task, they know how to identify possible solutions and self-
learn (by carefully reading project guidelines, documentation,
code, etc). Despite their difficulties in project & task selection
and their less significant contributions, more of them report
having benefited from our course, continue contributing to
OSS projects, and some even launch their own OSS projects.

Such contrast yields several additional lessons. First, the
OSS onboarding barriers can be beneficial in fostering “slow
thinking” and deliberately lowering them may harm the ful-
fillment of teaching goals. Even if mentors are involved in the
course, they should not behave like a “babysitter” but more
like a “receptionist” guiding students to the learning resources,
social events, and contribution opportunities. This will create
a more challenging environment in the course project, pushing
students to learn about the essence of OSS development.

Second, the development of intrinsic motivation for software
development should also be an important teaching goal. With-
out such motivation, students are more prone to setting GPA-
oriented goals in the course and apply more “fast thinking.”
According to student reflections (Section IV-D) and previous
studies [23], [26], newcomers are more intrinsically motivated
if they have experienced the rewarding part of OSS develop-
ment. Students can feel especially rewarded by the process of

overcoming onboarding barriers and their contributions to OSS
projects of their true interest. This highlights the importance
of retaining onboarding challenges in course project design,
giving students high flexibility in project & task selection, and
advising them to follow their true interests. According to the
Self-Determination Theory [56], [57], intrinsic motivation can
be also fostered by building relatedness to others in the course.
Similar to Morgan et al. [20], it may be beneficial to organize
more in-class discussions about the progress of course projects,
apart from the three more formal presentations.

VI. LIMITATIONS

It is important to note that our report is based on a relatively
small number of students and it is hard to use systematic meth-
ods to support our findings or to exclude possible confounding
factors in our interpretation. To mitigate biases, we try our best
to use our own judgments and our observation of students
(both in class and in personal Q&As) to calibrate the reported
results. In total, the professor and two TAs are involved and
this paper is presented as a consensus of all authors.

Although the results are based on running the course in
one specific university, i.e., Peking University, we believe that
our experiences and the lessons learned should be of sufficient
practical value for SE educators interested in teaching OSS in a
similar cultural and academic setting. As future work, we plan
to replicate this course in different universities to investigate
the impact of culture, pedagogical methods, students’ learning
habits, and personalities on the course design and outcome.

In addition, our hypotheses of the students’ thinking patterns
are based on our own observations and inferences, not on a
solid empirical foundation. A large part of the evidence that
helped us reach these hypotheses come from our casual, off-
class talks with the enrolled students, but we did not record
or took notes, nor did we apply systematic scientific methods
to analyze them. Future empirical research is necessary to es-
tablish the precise relationship between newcomer personality
and newcomer OSS onboarding outcomes.

VII. CONCLUSION

In this experience report, we have presented our experience
of teaching an OSS onboarding course, with a detailed course
design and the onboarding outcomes of students in Fall 2021.
In general, we feel that the course is a success and will benefit
the enrolled students in the long term (one invited speaker was
even jealous of this course and hoped he could have enrolled
when he was an undergraduate). The course will continue
to enroll students each Fall semester and we will iteratively
improve it; we have already implemented some of our learned
lessons in the Fall 2022 course. We hope this paper can provide
inspiration and practical values for others willing to integrate
OSS onboarding in SE education courses.

VIII. DATA AVAILABILITY

The course materials (in Chinese) are currently maintained
as an open source project accessible at:

https://github.com/osslab-pku/OSSDevelopment

To avoid leakage of sensitive data and ensure privacy, we
choose to anonymize all student information provided in this
paper and not to disclose any raw data related to students.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China Grant 61825201 and 62142201. We thank
Pengcheng Li for his contribution as a course TA in Fall 2021
and all the brilliant students who took our course.

REFERENCES

[1] C. Stokel-Walker. (2014, April) The Internet is
being protected by two guys named Steve.
[Online]. Available: https://www.buzzfeed.com/chrisstokelwalker/
the-internet-is-being-protected-by-two-guys-named-st

[2] T. Anderson. (2020, June) ’it’s really hard to find maintainers...’
Linus Torvalds ponders the future of Linux. [Online].
Available: https://www.theregister.com/2020/06/30/hard to find linux
maintainers says torvalds/

[3] M. Zhou, Q. Chen, A. Mockus, and F. Wu, “On the scalability of
linux kernel maintainers’ work,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: Association for Computing Machinery, 2017, p.
27–37. [Online]. Available: https://doi.org/10.1145/3106237.3106287

[4] X. Tan, M. Zhou, and Z. Sun, “A first look at good first issues
on GitHub,” in ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, Virtual Event, USA, November 8-13, 2020, P. Devanbu,
M. B. Cohen, and T. Zimmermann, Eds. ACM, 2020, pp. 398–409.
[Online]. Available: https://doi.org/10.1145/3368089.3409746

[5] W. Xiao, H. He, W. Xu, X. Tan, J. Dong, and M. Zhou, “Recommending
good first issues in github OSS projects,” in 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022,
Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2022, pp. 1830–1842.
[Online]. Available: https://doi.org/10.1145/3510003.3510196

[6] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles,
“A systematic literature review on the barriers faced by newcomers to
open source software projects,” Inf. Softw. Technol., vol. 59, pp. 67–85,
2015. [Online]. Available: https://doi.org/10.1016/j.infsof.2014.11.001

[7] S. Balali, I. Steinmacher, U. Annamalai, A. Sarma, and M. A. Gerosa,
“Newcomers’ barriers. . . is that all? An analysis of mentors’ and
newcomers’ barriers in OSS projects,” Comput. Support. Cooperative
Work., vol. 27, no. 3-6, pp. 679–714, 2018. [Online]. Available:
https://doi.org/10.1007/s10606-018-9310-8

[8] S. Balali, U. Annamalai, H. S. Padala, B. Trinkenreich, M. A.
Gerosa, I. Steinmacher, and A. Sarma, “Recommending tasks to
newcomers in OSS projects: How do mentors handle it?” in OpenSym
2020: 16th International Symposium on Open Collaboration, Virtual
Conference, Spain, August 26-27, 2020, G. Robles, K. Stol, and
X. Wang, Eds. ACM, 2020, pp. 7:1–7:14. [Online]. Available:
https://doi.org/10.1145/3412569.3412571

[9] H. He, H. Su, W. Xiao, R. He, and M. Zhou, “GFI-Bot: Automated
good first issue recommendation on GitHub,” in Proceedings of the
30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2022, Singapore, Singapore, November 14-18, 2022, A. Roychoudhury,
C. Cadar, and M. Kim, Eds. ACM, 2022, pp. 1751–1755. [Online].
Available: https://doi.org/10.1145/3540250.3558922

[10] X. Tan and M. Zhou, “How to communicate when submitting patches:
An empirical study of the Linux kernel,” Proc. ACM Hum. Comput.
Interact., vol. 3, no. CSCW, pp. 108:1–108:26, 2019. [Online].
Available: https://doi.org/10.1145/3359210

[11] J. D. O. Silva, I. Wiese, D. M. Germán, C. Treude, M. A.
Gerosa, and I. Steinmacher, “A theory of the engagement in open
source projects via summer of code programs,” in ESEC/FSE ’20:
28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual
Event, USA, November 8-13, 2020, P. Devanbu, M. B. Cohen, and
T. Zimmermann, Eds. ACM, 2020, pp. 421–431. [Online]. Available:
https://doi.org/10.1145/3368089.3409724

https://github.com/osslab-pku/OSSDevelopment
https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
https://www.buzzfeed.com/chrisstokelwalker/the-internet-is-being-protected-by-two-guys-named-st
https://www.theregister.com/2020/06/30/hard_to_find_linux_maintainers_says_torvalds/
https://www.theregister.com/2020/06/30/hard_to_find_linux_maintainers_says_torvalds/
https://doi.org/10.1145/3106237.3106287
https://doi.org/10.1145/3368089.3409746
https://doi.org/10.1145/3510003.3510196
https://doi.org/10.1016/j.infsof.2014.11.001
https://doi.org/10.1007/s10606-018-9310-8
https://doi.org/10.1145/3412569.3412571
https://doi.org/10.1145/3540250.3558922
https://doi.org/10.1145/3359210
https://doi.org/10.1145/3368089.3409724

[12] M. Zhou and A. Mockus, “What make long term contributors:
Willingness and opportunity in OSS community,” in 34th International
Conference on Software Engineering, ICSE 2012, June 2-9, 2012,
Zurich, Switzerland, M. Glinz, G. C. Murphy, and M. Pezzè, Eds.
IEEE Computer Society, 2012, pp. 518–528. [Online]. Available:
https://doi.org/10.1109/ICSE.2012.6227164

[13] ——, “Who will stay in the FLOSS community? Modeling participant’s
initial behavior,” IEEE Trans. Software Eng., vol. 41, no. 1, pp. 82–99,
2015. [Online]. Available: https://doi.org/10.1109/TSE.2014.2349496

[14] R. K. Raj and F. Kazemian, “Using open source software in computer
science courses,” in Proceedings. Frontiers in Education. 36th Annual
Conference. IEEE, 2006, pp. 21–26.

[15] J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Rajlich, “Teaching
evolution of open-source projects in software engineering courses,”
in 22nd IEEE International Conference on Software Maintenance
(ICSM 2006), 24-27 September 2006, Philadelphia, Pennsylvania, USA.
IEEE Computer Society, 2006, pp. 136–144. [Online]. Available:
https://doi.org/10.1109/ICSM.2006.66

[16] D. M. C. Nascimento, K. Cox, T. Almeida, W. Sampaio, R. A.
Bittencourt, R. R. G. Souza, and C. von Flach G. Chavez,
“Using open source projects in software engineering education:
A systematic mapping study,” in IEEE Frontiers in Education
Conference, FIE 2013, Oklahoma City, Oklahoma, USA, October
23-26, 2013, R. L. Shehab, J. J. Sluss, and D. A. Trytten, Eds.
IEEE Computer Society, 2013, pp. 1837–1843. [Online]. Available:
https://doi.org/10.1109/FIE.2013.6685155

[17] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,
“Selecting open source software projects to teach software engineering,”
in The 45th ACM Technical Symposium on Computer Science Education,
SIGCSE 2014, Atlanta, GA, USA, March 5-8, 2014, J. D. Dougherty,
K. Nagel, A. Decker, and K. Eiselt, Eds. ACM, 2014, pp. 397–402.
[Online]. Available: https://doi.org/10.1145/2538862.2538932

[18] Z. Hu, Y. Song, and E. F. Gehringer, “Open-source software in class:
students’ common mistakes,” in Proceedings of the 40th International
Conference on Software Engineering: Software Engineering Education
and Training, ICSE (SEET) 2018, Gothenburg, Sweden, May 27 - June
03, 2018, P. Lago and M. Young, Eds. ACM, 2018, pp. 40–48.
[Online]. Available: https://doi.org/10.1145/3183377.3183394

[19] S. H. Tan, C. Hu, Z. Li, X. Zhang, and Y. Zhou, “GitHub-OSS
Fixit: Fixing bugs at scale in a software engineering course,” in
43rd IEEE/ACM International Conference on Software Engineering:
Software Engineering Education and Training, ICSE (SEET) 2021,
Madrid, Spain, May 25-28, 2021. IEEE, 2021, pp. 1–10. [Online].
Available: https://doi.org/10.1109/ICSE-SEET52601.2021.00009

[20] B. Morgan and C. Jensen, “Lessons learned from teaching open source
software development,” in Open Source Software: Mobile Open Source
Technologies - 10th IFIP WG 2.13 International Conference on Open
Source Systems, OSS 2014, San José, Costa Rica, May 6-9, 2014.
Proceedings, ser. IFIP Advances in Information and Communication
Technology, L. Corral, A. Sillitti, G. Succi, J. Vlasenko, and A. I.
Wasserman, Eds., vol. 427. Springer, 2014, pp. 133–142. [Online].
Available: https://doi.org/10.1007/978-3-642-55128-4 18

[21] G. Pinto, C. Ferreira, C. Souza, I. Steinmacher, and P. Meirelles,
“Training software engineers using open-source software: the students’
perspective,” in Proceedings of the 41st International Conference on
Software Engineering: Software Engineering Education and Training,
ICSE (SEET) 2019, Montreal, QC, Canada, May 25-31, 2019,
S. Beecham and D. E. Damian, Eds. IEEE / ACM, 2019, pp. 147–157.
[Online]. Available: https://doi.org/10.1109/ICSE-SEET.2019.00024

[22] D. Kahneman, Thinking, Fast and Slow. Macmillan, 2011.
[23] G. von Krogh, S. Haefliger, S. Spaeth, and M. W. Wallin, “Carrots

and rainbows: Motivation and social practice in open source software
development,” MIS Q., vol. 36, no. 2, pp. 649–676, 2012.

[24] Y. Ye and K. Kishida, “Toward an understanding of the motivation
of open source software developers,” in Proceedings of the 25th
International Conference on Software Engineering, May 3-10, 2003,
Portland, Oregon, USA, 2003, pp. 419–429. [Online]. Available:
https://doi.org/10.1109/ICSE.2003.1201220

[25] A. Hars and S. Ou, “Working for free? motivations of participating in
open source software projects,” HICSS’04, pp. 25–31, 2004.

[26] M. A. Gerosa, I. Wiese, B. Trinkenreich, G. Link, G. Robles,
C. Treude, I. Steinmacher, and A. Sarma, “The shifting sands of
motivation: Revisiting what drives contributors in open source,” in 43rd
IEEE/ACM International Conference on Software Engineering, ICSE

2021, Madrid, Spain, 22-30 May 2021. IEEE, 2021, pp. 1046–1058.
[Online]. Available: https://doi.org/10.1109/ICSE43902.2021.00098

[27] C. J. Mendez, H. S. Padala, Z. Steine-Hanson, C. Hilderbrand,
A. Horvath, C. Hill, L. Simpson, N. Patil, A. Sarma, and M. M.
Burnett, “Open source barriers to entry, revisited: A sociotechnical
perspective,” in Proceedings of the 40th International Conference
on Software Engineering, ICSE 2018, Gothenburg, Sweden, May
27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, Eds. ACM, 2018, pp. 1004–1015. [Online]. Available:
https://doi.org/10.1145/3180155.3180241

[28] I. Steinmacher, M. A. Gerosa, T. U. Conte, and D. F. Redmiles,
“Overcoming social barriers when contributing to open source
software projects,” Comput. Support. Cooperative Work., vol. 28, no.
1-2, pp. 247–290, 2019. [Online]. Available: https://doi.org/10.1007/
s10606-018-9335-z

[29] J. W. D. Alderliesten and A. Zaidman, “An initial exploration of
the ”good first issue” label for newcomer developers,” in 14th
IEEE/ACM International Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE@ICSE 2021, Madrid, Spain,
May 20-21, 2021. IEEE, 2021, pp. 117–118. [Online]. Available:
https://doi.org/10.1109/CHASE52884.2021.00023

[30] H. Horiguchi, I. Omori, and M. Ohira, “Onboarding to open
source projects with good first issues: A preliminary analysis,”
in 28th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER 2021, Honolulu, HI, USA,
March 9-12, 2021. IEEE, 2021, pp. 501–505. [Online]. Available:
https://doi.org/10.1109/SANER50967.2021.00054

[31] I. Steinmacher, T. U. Conte, and M. A. Gerosa, “Understanding
and supporting the choice of an appropriate task to start with in
open source software communities,” in 48th Hawaii International
Conference on System Sciences, HICSS 2015, Kauai, Hawaii,
USA, January 5-8, 2015, T. X. Bui and R. H. S. Jr., Eds.
IEEE Computer Society, 2015, pp. 5299–5308. [Online]. Available:
https://doi.org/10.1109/HICSS.2015.624

[32] C. Stanik, L. Montgomery, D. Martens, D. Fucci, and W. Maalej,
“A simple NLP-based approach to support onboarding and retention
in open source communities,” in 2018 IEEE International Conference
on Software Maintenance and Evolution, ICSME 2018, Madrid, Spain,
September 23-29, 2018. IEEE Computer Society, 2018, pp. 172–182.
[Online]. Available: https://doi.org/10.1109/ICSME.2018.00027

[33] Y. Huang, J. Wang, S. Wang, Z. Liu, D. Wang, and Q. Wang,
“Characterizing and predicting good first issues,” in ESEM ’21: ACM
/ IEEE International Symposium on Empirical Software Engineering
and Measurement, Bari, Italy, October 11-15, 2021, F. Lanubile,
M. Kalinowski, and M. T. Baldassarre, Eds. ACM, 2021, pp. 13:1–
13:12. [Online]. Available: https://doi.org/10.1145/3475716.3475789

[34] F. Fagerholm, A. S. Guinea, J. Münch, and J. Borenstein, “The
role of mentoring and project characteristics for onboarding in open
source software projects,” in 2014 ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM ’14,
Torino, Italy, September 18-19, 2014, M. Morisio, T. Dybå, and
M. Torchiano, Eds. ACM, 2014, pp. 55:1–55:10. [Online]. Available:
https://doi.org/10.1145/2652524.2652540

[35] S. Panichella, “Supporting newcomers in software development
projects,” in 2015 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2015, Bremen, Germany, September
29 - October 1, 2015, R. Koschke, J. Krinke, and M. P. Robillard,
Eds. IEEE Computer Society, 2015, pp. 586–589. [Online]. Available:
https://doi.org/10.1109/ICSM.2015.7332519

[36] J. D. O. Silva, I. S. Wiese, I. Steinmacher, and M. A. Gerosa,
“Students’ engagement in open source projects: An analysis of google
summer of code,” in Proceedings of the 31st Brazilian Symposium on
Software Engineering, SBES 2017, Fortaleza, CE, Brazil, September
20-22, 2017, J. C. Maldonado, F. C. Ferrari, U. Kulesza, and
T. U. Conte, Eds. ACM, 2017, pp. 224–233. [Online]. Available:
https://doi.org/10.1145/3131151.3131156

[37] J. D. O. Silva, I. S. Wiese, D. M. Germán, I. F. Steinmacher, and M. A.
Gerosa, “How long and how much: What to expect from summer of
code participants?” in 2017 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2017, Shanghai, China, September
17-22, 2017. IEEE Computer Society, 2017, pp. 69–79. [Online].
Available: https://doi.org/10.1109/ICSME.2017.81

[38] G. Canfora, M. D. Penta, R. Oliveto, and S. Panichella, “Who is
going to mentor newcomers in open source projects?” in 20th ACM

https://doi.org/10.1109/ICSE.2012.6227164
https://doi.org/10.1109/TSE.2014.2349496
https://doi.org/10.1109/ICSM.2006.66
https://doi.org/10.1109/FIE.2013.6685155
https://doi.org/10.1145/2538862.2538932
https://doi.org/10.1145/3183377.3183394
https://doi.org/10.1109/ICSE-SEET52601.2021.00009
https://doi.org/10.1007/978-3-642-55128-4_18
https://doi.org/10.1109/ICSE-SEET.2019.00024
https://doi.org/10.1109/ICSE.2003.1201220
https://doi.org/10.1109/ICSE43902.2021.00098
https://doi.org/10.1145/3180155.3180241
https://doi.org/10.1007/s10606-018-9335-z
https://doi.org/10.1007/s10606-018-9335-z
https://doi.org/10.1109/CHASE52884.2021.00023
https://doi.org/10.1109/SANER50967.2021.00054
https://doi.org/10.1109/HICSS.2015.624
https://doi.org/10.1109/ICSME.2018.00027
https://doi.org/10.1145/3475716.3475789
https://doi.org/10.1145/2652524.2652540
https://doi.org/10.1109/ICSM.2015.7332519
https://doi.org/10.1145/3131151.3131156
https://doi.org/10.1109/ICSME.2017.81

SIGSOFT Symposium on the Foundations of Software Engineering
(FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11 - 16,
2012, W. Tracz, M. P. Robillard, and T. Bultan, Eds. ACM, 2012,
p. 44. [Online]. Available: https://doi.org/10.1145/2393596.2393647

[39] I. Steinmacher, I. S. Wiese, and M. A. Gerosa, “Recommending
mentors to software project newcomers,” in Proceedings of the Third
International Workshop on Recommendation Systems for Software
Engineering, RSSE 2012, Zurich, Switzerland, June 4, 2012, W. Maalej,
M. P. Robillard, R. J. Walker, and T. Zimmermann, Eds. IEEE, 2012, pp.
63–67. [Online]. Available: https://doi.org/10.1109/RSSE.2012.6233413

[40] H. J. C. Ellis, R. A. Morelli, T. R. de Lanerolle, and G. W. Hislop,
“Holistic software engineering education based on a humanitarian
open source project,” in 20th Conference on Software Engineering
Education and Training (CSEE&T 2007), 3-5 July 2007, Dublin,
Ireland. IEEE Computer Society, 2007, pp. 327–335. [Online].
Available: https://doi.org/10.1109/CSEET.2007.26

[41] D. Carrington and S.-K. Kim, “Teaching software design with open
source software,” in 33rd Annual Frontiers in Education, 2003. FIE
2003., vol. 3. IEEE, 2003, pp. S1C–9.

[42] E. E. Allen, R. Cartwright, and C. Reis, “Production programming
in the classroom,” in Proceedings of the 34th SIGCSE Technical
Symposium on Computer Science Education, SIGCSE 2003, Reno,
Nevada, USA, February 19-23, 2003, S. Grissom, D. Knox, D. T.
Joyce, and W. P. Dann, Eds. ACM, 2003, pp. 89–93. [Online].
Available: https://doi.org/10.1145/611892.611940

[43] E. F. Gehringer, “From the manager’s perspective: Classroom
contributions to open-source projects,” in 2011 Frontiers in Education
Conference, FIE 2011, Rapid City, SD, USA, October 12-15,
2011. IEEE Computer Society, 2011, p. 1. [Online]. Available:
https://doi.org/10.1109/FIE.2011.6143028

[44] D. M. C. Nascimento, R. A. Bittencourt, and C. Chavez, “Open source
projects in software engineering education: A mapping study,” Comput.
Sci. Educ., vol. 25, no. 1, pp. 67–114, 2015. [Online]. Available:
https://doi.org/10.1080/08993408.2015.1033159

[45] (2022) Test PyPI. [Online]. Available: https://test.pypi.org/
[46] M. Zhou, X. Hu, and W. Xiong, “openEuler: Advancing a hardware

and software application ecosystem,” IEEE Software, vol. 39, no. 2, pp.
101–105, 2022.

[47] (2022) Kata Containers. [Online]. Available: https://katacontainers.io/
[48] (2022) PaddlePaddle. [Online]. Available: https://www.paddlepaddle.

org.cn/
[49] (2022) TiDB. [Online]. Available: https://github.com/pingcap/tidb
[50] V. Braun and V. Clarke, “Thematic analysis.” 2012.
[51] D. S. Cruzes and T. Dybå, “Recommended steps for thematic

synthesis in software engineering,” in Proceedings of the 5th
International Symposium on Empirical Software Engineering and
Measurement, ESEM 2011, Banff, AB, Canada, September 22-23, 2011.
IEEE Computer Society, 2011, pp. 275–284. [Online]. Available:
https://doi.org/10.1109/ESEM.2011.36

[52] R. B. Zajonc, “Attitudinal effects of mere exposure.” Journal of Person-
ality and Social Psychology, vol. 9, no. 2p2, p. 1, 1968.

[53] R. M. Montoya, R. S. Horton, J. L. Vevea, M. Citkowicz, and E. A.
Lauber, “A re-examination of the mere exposure effect: The influence of
repeated exposure on recognition, familiarity, and liking.” Psychological
Bulletin, vol. 143, no. 5, p. 459, 2017.

[54] T. Gilovich, D. Griffin, D. Kahneman et al., Heuristics and Biases: The
Psychology of Intuitive Judgment. Cambridge university press, 2002.

[55] (2022) pandas. [Online]. Available: https://pandas.pydata.org/
[56] E. L. Deci and R. M. Ryan, “The” what” and” why” of goal pursuits:

Human needs and the self-determination of behavior,” Psychological
Tnquiry, vol. 11, no. 4, pp. 227–268, 2000.

[57] ——, “Self-determination theory: A macrotheory of human motivation,
development, and health.” Canadian Psychology/Psychologie Canadi-
enne, vol. 49, no. 3, p. 182, 2008.

https://doi.org/10.1145/2393596.2393647
https://doi.org/10.1109/RSSE.2012.6233413
https://doi.org/10.1109/CSEET.2007.26
https://doi.org/10.1145/611892.611940
https://doi.org/10.1109/FIE.2011.6143028
https://doi.org/10.1080/08993408.2015.1033159
https://test.pypi.org/
https://katacontainers.io/
https://www.paddlepaddle.org.cn/
https://www.paddlepaddle.org.cn/
https://github.com/pingcap/tidb
https://doi.org/10.1109/ESEM.2011.36
https://pandas.pydata.org/

	Introduction
	Background
	Newcomer Onboarding
	Education for Open Source
	Mentoring
	Courses

	Course Design
	The Course Schedule
	The Course Project
	Grading

	Student Onboarding Trajectories
	Project and Task Selection
	Project Selection
	Task Selection
	The Switch of Projects and Tasks

	Communication and Interactions
	Contribution Outcomes
	Students' Reflection
	Students' Positive Feedback
	Challenges Encountered

	Retention in OSS

	Lessons Learned
	Limitations
	Conclusion
	Data Availability
	References

